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Abstract:	 Measurements in engineering surveying are aimed at determining the coordi-
nates of the points of a geodetic control, spatially setting out a technical design 
of an engineering structure, determining the spatial coordinates of points (or 
their displacement) that represent an engineering structure, and identifying the 
displacement and deformation of a studied engineering structure.

	 Provided that the aforementioned measurements are to represent the same 
engineering structure, such observation results should be settled (adjusted) in 
one calculation process. The application of the Gauss–Markov theorem for this 
adjustment using covariance matrix Cov(L) for observed values L is the clas-
sical approach for adjusting the results of surveying observations of various 
accuracy (taking into account accuracy weights).

	 Determining the displacements of points in the process of adjusting the results 
of periodic measurements, applying different methods of tying geodetic con-
trols to national networks, and using various instruments and measurement 
methods result in the individual displacement components or coordinates 
of the observed points being determined with different accuracies. This cir-
cumstance forms the basis for the assumption that the estimated parameters 
(unknown values) should be random.

	 This paper will formulate the principles of estimation of Gauss–Markov models 
in which the estimated parameters (X) are random. For this purpose, methods 
for the prior definition of covariance matrix CX for  the estimated parameters 
will be provided, which will be used to determine the conditional covariance 
matrix of observation vector L and then to estimate the most probable values of 
the X̂ parameters. Covariance matrix Cov(X̂) obtained as a result of this estima-
tion will be used to define the limit values of the variances of these parameters.
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1.	 Introduction

Engineering surveying uses the results of observations performed with a vari-
ety of instruments and measurement methods such as electronic total stations, pre-
cision levelers, satellite techniques and laser scanners, and precision instruments 
for short-distance measurements. The main purpose of these measurements is to 
determine the coordinates of the points representing the geodetic control or a stud-
ied engineering structure or to spatially set out the technical design of a structure.

Providing that the conducted measurements represent a selected engineering 
structure, the results of these observations should be adjusted in one calculation pro-
cess. In the current surveying practice, the Gauss–Markov model is used to adjust 
the observation results, taking into account the diagonal covariance matrix for the 
observed values.

The Gauss–Markov model is also used to adjust the measurement results 
of multi-row controls, taking into account the apparent observational equations 
(pseudo-observations) for the coordinates of the reference points. For the pseu-
do-observations, the appropriate weights resulting from the accuracy of the coor-
dinates of the analyzed points are assigned. Many authors of research studies in 
this field use a sequential adjustment of the measurement results; that is, adjust-
ments carried out in many stages. Wiśniewski [1, 2] demonstrated that the formu-
lated equations of the pseudo-observations for coordinates of points in sequential 
adjustment yield identical estimators as the adjustment of the whole geodetic net-
work in one stage.

The issues related to the selection of the appropriate weights to adjust the 
observation results in geodetic control networks were the subject of the follow-
ing studies: Baarda [3], Teunissen [4], Rao [5], Czaja [6], and Cross [7]. One of the 
methods for optimizing geodetic networks is a strategy for the balanced accura-
cy of observations developed by Kampmann [8] and Caspary [9]. Another pro-
posal for the selection of observations and their weights was presented by Hek-
imoglu [10] as well as by Kampmann and Krause [11]. The problem of selecting 
the appropriate weights for determining the coordinates of the points of geodetic 
networks is closely associated with the internal and external reliability of the 
network. The theory of network reliability is the subject of numerous scientific 
papers, and the precursors of these studies include Baarda [12, 13] and Pope [14]. 
Prószyński’s studies [15, 16] represent a significant accomplishment in this field 
as well. The issues related to the design of optimal horizontal and vertical con-
trol networks and their being tied to national geodetic networks are discussed in 
Dąbrowski [17, 18].

Engineering surveying uses horizontal and vertical control networks tied to 
national geodetic networks, periodic measurements of the networks of measure-
ment points, various instruments and methods of observation, and various ways of 
stabilizing observation stands and measurement points. All of these observations 
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most frequently lead to the determination of the coordinates of individual points 
with different accuracies. This circumstance forms the basis for the assumption 
that the adjusted coordinates of the measurement points should be random, which 
means that a covariance matrix should be formulated a priori.

This paper will formulate the principles of estimation of the parameters of 
Gauss–Markov models and their variance applied to a network of geodetic points 
where the estimated parameters (coordinates of the points) will be random.

2.	 Theoretical Bases for Gauss–Markov model (L, AX, H)  
with Random Parameters

Horizontal and vertical angles, horizontal and spatial lengths, coordinates of 
3-D points in a  fixed reference system, height differences, and the displacement 
of selected points may be observed in the networks of measurement points used in 
engineering surveying. For each observed value of λ, the observational equation 
in the general form can be formulated as follows:

δλ + d(λ) = λobserv – λapprox� (1)

where:
		  δλ 	 – 	random deviation to observed value (λobserv),
		  d(λ) 	 – 	the differential of a  function describing the variability of analyzed 

component with respect to the coordinates of the points of the geo-
detic network defining that component,

	 λapprox 	– 	the approximate value of the analyzed component, determined sub-
ject to the approximate coordinates of the points of a geodetic net-
work.

Let L be a vector of random variables representing the differences between the 
observed values of the components in geodetic networks and their approximate 
values; i.e., (λobserv – λapprox). The average value of this vector can be described using 
fixed linear model E(L) = AX, where X is the vector of the unknown parameters 
(adjustments to the approximated coordinates of the points). Matrix A represents 
the matrix of coefficients defined by the values of the partial derivatives occurring 
in differential d(λ). It is assumed that vector of unknown parameters X also rep-
resents a random variable for which it is possible to determine a priori covariance 
matrix CX.

Let matrix H (whose inverse corresponds to weight matrix P) be the covariance 
matrix of observation L with predetermined X; that is:

H = V(L/X)� (2)
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Taking into account the above assumptions, the conditional covariance matrix 
of observation vector L can be determined by the following dependence:

V(L) = E[V(L/X)] + V[E(L/X)] = H + V(AX) = H + ACXAT� (3)

The estimation of the average value of vector L will be performed using param-
eter estimators representing vector X using covariance Matrix (3) and the method 
of least squares. For this purpose, square form F will be formulated for random 
deviations (objective function) but by taking into account the conditional covari-
ance matrix of observation vector L for which the minimum relative to vector of 
unknowns X will be sought; i.e.,

F = [(L – AX)T(H + ACXAT)–1(L – AX)] = min� (4)

The necessary condition for the minimum of Function (4) can be written in the 
following symbolic form:

F



0

X
� (5)

After performing the differentiation of Function (4), a system of matrix equa-
tions is obtained, which satisfies Condition (5), which is the basis for the determina-
tion of the unbiased estimator of vector X̂; i.e.,

X̂ = CXAT(H + ACXAT)–1L� (6)

Further matrix transformations of Dependence (6) lead to an alternative formu-
la for calculating the estimator of vector X̂ in the following form:

X̂ = (CX
–1 + ATH–1A)–1ATH–1L � (7)

In order to examine the effectiveness of this estimator, a full analysis of the var-
iance and interval estimation is necessary.

The vector of random deviation δ to estimate linear model AX̂ is the difference 
between vector L and its mean value E(L) = AX̂; that is:

δ = L – AX̂� (8)

The variance for the estimated model resulting from the mutual inconsistency 
of the survey results of the geodetic control network is defined by the following 
formula:

1
2
0ˆ



 

H T

n u
� (9)

where 	 n – 	the number of observed random variables (components in the geodetic 
control network), u = R(A).



37Application of Advanced Statistical Procedures 
for Adjustment of Measurement Results... 

The covariance matrix of the estimated vector of parameters X̂ is defined by 
Variance (9) and the matrix contained in Formula (7); hence, it is expressed by the 
following formula:

Cov(X̂) = σ2
0(CX

–1 + ATH–1A)–1� (10)

Components on the diagonal of Matrix (10) determine the variances of the indi-
vidual estimated parameters, and their square root is the standard deviation σ(X̂i) 
of these parameters.

In order to determine the significance level of the values of the estimated 
parameters, it is necessary to estimate the limit value of their variance or standard 
deviation at a predetermined confidence level of (1 – α). The functional relationship 
that represents the estimated variance σ2(X̂i) of the analyzed parameter (X̂i) and the 
tested variance σ2(Xi) of this parameter (taking into account k = n − u degrees of free-
dom) is determined by the chi-square (χ2) and takes the following form:

2
2

2

ˆ( )
( )


 


i

i

k X
X �

(11)

Pearson demonstrated that the variability of the above relationship for a static 
test can be presented by a gamma function that, under the appropriate boundary 
conditions, describes the density distribution of the probability of random varia-
ble χ2 (known as the chi-square distribution in short). The chi-square distribution 
for different degrees of freedom k = n − u takes on a different form (as illustrated in 
Figure 1).

Fig. 1. Chi-square distribution of probability density
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The chi-square distribution can be defined by its quantiles χ2(α; k), deter-
mined by the probability density function and significance index α. Quantile 
χ2(α; k) is the length of the abscissa on axis 0χ2 that (from the entire field under 
the density function diagram with a surface of 1) cuts off the area of α (as illus-
trated in Figure 2).
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Fig. 2. Quartiles of chi-square distribution

The area marked in Figure 2 satisfies inequality χ2 > χ2 (α; k) that represents the 
probabilities of the values of (1 – α), which is called the confidence level. This rela-
tionship can be expressed in the following analytical form:

P[χ2 > χ2 (α; k)] = 1 – α 	�  (12)

After substituting χ2 with Expression (11), the relationship of the estimated 
variance and tested variance was obtained in conjunction with distribution quan-
tile (χ2); i.e.:

2
2

2

ˆσ ( ) χ (α ;  ) 1 α
σ ( )

 
    
  

i
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X 	

	�  (13)

The above relationship will always occur if the expression in the square brack-
ets is satisfied; i.e.: 

2
2

2

ˆσ ( ) χ (α ;  )
σ ( )


 i
k X k

X �
(14)

The transformation of the above inequality leads to the following condition for 
the tested variance, which is a limiting variance for a confidence level of (1 – α): 

2
2

2

ˆσ ( )σ ( )
χ (α ;  )



i

k XX
k �

(15)

χ2 (α; k) χ2

φ(χ2)

α 1 – α
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An interpretation of the above inequality is as follows: at a confidence level of 
(1 – α), the maximum value of the tested variance will always be less than or equal to 
the estimated variance multiplied by coefficient k/χ2 (α; k). For practical applications, 
the values of these coefficients were determined for the selected degrees of freedom 
(from 2 to 10) and the selected confidence levels (from 0.99 to 0.60) as illustrated in 
Table 1.

Table 1. Coefficients for determining limit value of variance or [limit standard deviation] 
for estimated parameters (coordinates of geodetic network points)

k/(1 – α) 0.99 0.95 0.90 0.80 0.60

k = 2 100.00 [10.0] 19.42 [4.4] 9.48 [3.1] 4.48 [2.1] 1.96 [1.4]

k = 3 26.09 [5.1] 8.52 [2.9] 5.14 [2.3] 2.98 [1.7] 1.60 [1.3]

k = 4 13.47 [3.7] 5.62 [2.4] 3.76 [1.9] 2.43 [1.6] 1.45 [1.2]

k = 5 9.02 [3.0] 4.37 [2.1] 3.10 [1.8] 2.13 [1.5] 1.37 [1.2]

k = 6 6.88 [2.6] 3.67 [1.9] 2.72 [1.6] 1.95 [1.4] 1.31 [1.2]

k = 7 5.65 [2.3] 3.23 [1.8] 2.47 [1.6] 1.83 [1.4] 1.27 [1.1]

k = 8 4.86 [2.2] 2.93 [1.7] 2.29 [1.5] 1.74 [1.3] 1.24 [1.1]

k = 9 4.31 [2.1] 2.71 [1.6] 2.16 [1.5] 1.67 [1.3] 1.22 [1.1]

k = 10 3.90 [2.0] 2.53 [1.6] 2.06 [1.4] 1.62 [1.3] 1.20 [1.1]

In a practical example, the coefficient values demonstrated in Table 1 can be 
interpreted as follows: if the horizontal geodetic network consisting of 7 points 
was measured with angles and side lengths with reference to a geodetic network 
of a higher level in the total number of n = 18, then the value of coefficient k/χ2 (α; k) 
for a confidence level of , and degrees of freedom k = 18 – 4 = 4 is 3.76. This also 
means that the limit value of the standard deviation for the estimated coordinates 
of the points of the analyzed control is 1.9 times the value of the estimated standard 
deviation.

The determination and selection of the components of covariance matrix CX  
for vector of unknown parameters X and conditional covariance matrices H for the 
observation vector directly influence the efficiency of the estimated vector of param-
eters X̂ and on its reliability as well.

3.	 Applications of Gauss–Markov Model  
with Random Parameters

The Gauss–Markov model (G-M) with random parameters can be used in the 
several issues related to engineering surveying.
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These are:
–– determination of point displacements based on periodic geodetic measurements,
–– determination of geometric parameters of building structures and technical 

facilities for control and rectification purposes,
–– adjustment of measurement results when establishing geodetic control net-

works that are tied to national networks,
–– adjustment of measurement results performed with electronic total stations 

and GPS technology, taking into account a different stabilization of the geo-
detic network points.

This paper will formulate the principles for the prior defining of the compo-
nents of covariance matrix CX  for the first application area; i.e., the periodic surveys 
of geodetic control networks that are to form the basis for determining the displace-
ments of the points representing the engineering structures.

If the geodetic control network is observed periodically, the purpose of each 
survey will be to determine the most likely coordinates of its points in a  fixed 
reference system. The differences in the adjusted coordinates of the periodically 
observed points are determined by the components of their displacements. The 
determination of a  local reference system occurs in the process of adjusting the 
periodic measurements. The adoption of a  reference system for the adjustment 
of the observation results from the first periodic measurement is of particular 
importance. The approximate coordinates of the geodetic network points needed 
to compare the observational equations should always be determined in the local 
system based on the accurate measurements of the components in the analyzed 
networks.

The use of the G-M model with random parameters to adjust the results 
of the first measurement requires a suitable design of covariance matrix CX  for 
the estimated adjustments to the approximated coordinates of the points. If all 
of the observed points of the geodetic network have an equally accurate stabi-
lization (both for the stands and targets) and will be measured with the same 
instruments, then covariance matrix CXI should be diagonal, and its components 
should take the predetermined values for the variances of the individual coor-
dinates of the points. After applying a  variance analysis to the differential of 
the section length as the linear form of the differentials of the coordinates of 
the endpoints, the following formula for the variance of the section length is 
obtained:

σ2(d) = 2(σ2
w) � (16)

assuming that the variances for the individual coordinates of the points (σ2
w) have the 

same value. If an electronic total station with nominal accuracy of 5 mm (for exam-
ple) is used for the measurement of the geodetic control network, then this value 
should be used in Formula (16) for σ2(d) = 25 mm2 . 
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Thus, the variance for the individual coordinates of the points will be at a level of

2 2 21σ σ ( ) 12.5 mm
2w d 

�
(17)

Such a  variance should become the components on the main diagonal of 
matrix  CXI, which will be used to adjust the horizontal geodetic control network 
in the first periodic measurement. In the case of the leveling network of points, the 
value of the variance of the benchmark height is set at the accuracy level of reading 
from the level staff. 

Based on the adjustment of the results of the first periodic measurement, the 
most probable correction vector to the approximate coordinates of the points can be 
determined (as illustrated by Formula [7]) recorded in the following form:

X̂I
 = (CXI

–1 + ATH–1A)–1ATH–1LI�  (18)

and the covariance matrix for this correction vector (as illustrated in Formula [10]) 
is expressed as follows:

Cov(X̂I) = σ2
0(CXI

–1 + ATH–1A)–1� (19)

For the formulation of the observational equations for the second periodic meas-
urement, the adjusted coordinates of the points from the first measurement should 
be used, while matrix Cov(X̂I) obtained in the process of adjusting the first measure-
ment will be covariance matrix CX for the adjustment of the second measurement. 
The adjustment of the observation results of the second periodic measurement in the 
form of equation

X̂II
 = [Cov(X̂I)–1 + ATH–1A]–1ATH–1LII� (20)

provides the most likely components of the displacements of the analyzed points; i.e.:

X̂II
 = [ux1

 uy1
 ... uxi

 uyi
]T = ÛII	�   (21)

The covariance matrix for such components of the point displacements is 
expressed by the following formula:

Cov(X̂II) = σ2
II[Cov(X̂I)–1 + ATH–1A]–1	�   (22)

After using the coefficients contained in Table 1, the limit values of the vari-
ance will be defined for the determined displacement components. Those points 
whose displacement components exceed the limit values of their variances should 
be regarded as shifted points at the adopted confidence level.	  
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4.	 Conclusions

The proposed algorithm for the estimation of the Gauss–Markov model with 
random parameters to adjust the results of the periodic measurements of geodetic 
control networks allows us to determine the most likely coordinates of the points 
and their displacement components as well as the standard deviations for these 
parameters.

The values of the coefficients contained in Table 1 (defined by chi-square dis-
tribution quantiles) make it possible to determine the limit values of the standard 
deviations for the determined components of the point displacements that form the 
basis for identifying the shifted points.

The analyses contained in this paper can be successfully used at the design 
stage of geodetic control networks that are periodically observed in terms of 
selecting the appropriate observation components and the accuracy of their meas-
urement.
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Zastosowanie zaawansowanych procedur statystycznych  
do wyrównywania wyników pomiarów w geodezji inżynieryjnej

Streszczenie:	 Celem pomiarów w  geodezji inżynieryjnej może być: wyznaczanie współ-
rzędnych punktów osnowy realizacyjnej, wytyczenie w  przestrzeni projektu 
technicznego obiektu inżynierskiego, wyznaczenie przestrzennych współrzęd-
nych punktów lub ich przemieszczeń reprezentujących obiekt inżynierski oraz 
określenie przemieszczeń i odkształceń badanego obiektu inżynierskiego.

	 Jeżeli wyżej wymienione pomiary odnoszą się do obiektu inżynierskiego, to 
takie wyniki obserwacji powinny być uzgadniane (wyrównywane) w jednym 
procesie obliczeniowym. Zastosowanie do tego wyrównania modeli Gaussa–
Markowa z wykorzystaniem macierzy kowariancji Cov(L) dla wielkości obser-
wowanych L stanowi klasyczne postępowanie wyrównywania różnodokład-
nych wyników obserwacji geodezyjnych, z uwzględnieniem wag dokładności.

	 Wyznaczanie przemieszczeń punktów w  procesie wyrównywania wyników 
okresowych pomiarów, stosowanie różnych sposobów nawiązywania osnów 
realizacyjnych do sieci państwowych oraz wykorzystywanie różnych przyrzą-
dów i  metody pomiaru – wszystko to powoduje, że poszczególne składowe 
przemieszczeń lub współrzędne obserwowanych punktów będą określane 
z  różną dokładnością. Ta okoliczność jest podstawą założenia, że szacowane 
parametry (niewiadome) powinny mieć charakter losowy.



44 J. Czaja, J.A. Dąbrowski

	 W artykule sformułowano zasady estymacji modeli Gaussa–Markowa, w któ-
rych szacowane parametry X mają charakter losowy. W  tym celu podano 
sposoby określania a  priori macierzy kowariancji CX dla estymowanych pa-
rametrów, która została wykorzystana do wyznaczenia macierzy kowarian-
cji warunkowych wektora obserwacji L, a następnie do estymacji najbardziej 
prawdopodobnych wartości parametrów X̂. Uzyskana w wyniku tej estymacji 
macierz kowariancji Cov(X̂) została wykorzystana do ustalenia granicznych 
wartości wariancji tych parametrów.

	 Praktyczne zastosowanie proponowanego sposobu estymacji modelu G-M do 
wyznaczania pionowych przemieszczeń powierzchni osuwiska, dla parame-
trów losowych, zostało zilustrowane na przykładzie fragmentu niwelacyjnej 
sieci punktów.

Słowa 
kluczowe: 	 pomiary w  geodezji inżynieryjnej, model Gaussa–Markova, diagonalna ma-

cierz kowariancyjna


