Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The production of secondary (recycled) aluminium has gained significant importance in recent years, driven by the need to reduce electricity consumption and waste associated with primary aluminium production. Secondary aluminium alloys thus play a vital role in sustainable industrial practices, particularly within sectors such as automotive, aerospace and marine. Recently, these alloys have gained traction in electric vehicle components manufacturing, where lightweight and sustainable materials are critical to enhancing energy efficiency and extending vehicle range. However, secondary aluminium alloys are prone to impurities and casting defects, notably porosity, which presents challenges in achieving optimal mechanical properties and surface quality. Porosity reduces corrosion resistance, fatigue, and tensile strength, thus impacting overall material performance. This porosity can be categorised by size (microporosity and macroporosity) and origin, with gas and shrinkage porosity being the primary types. This study examined experimental A356 secondary aluminium alloys with varying iron contents in as-cast and T6 heat-treated conditions. The analysis focused on the quantitative assessment of casting defects within the microstructure, specifically, the types of pores present, the area percentage of pores, and average pore size. These insights contribute to a deeper understanding of how casting defects impact the performance of recycled aluminium alloys in sustainable applications, particularly in the context of nextgeneration electric vehicles.
Wydawca
Rocznik
Tom
Strony
430--438
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- University of Žilina, Slovakia
autor
- University of Žilina, Slovakia
autor
- University of Žilina, Slovakia
autor
- University of Žilina, Slovakia
Bibliografia
- 1.Akhtar, Sh., 2010. Hydrogen Porosity in Al-Si Foundry Alloys. Department of Materials Science and Engineering, Norwegian University of Science and Technology. Trondheim: PhD Thesis.
- 2.Brough, D., Jouhara, H., 2020. The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. International Journal of Thermofluids, 1-2, 1 - 39, DOI: 10.1016/j.ijft.2019.100007.
- 3.Cáceres, C. H., Selling, B. I.,1996. Casting defects and the tensile properties of an Al-SiMg alloy. Materials Science and Engineering A, 220(1), 109 - 116, DOI: 10.1016/S0921-5093(96)10433-0.
- 4.Cullen, J. M., Allwood, J. M., 2013. Mapping the Global Flow of Aluminum: From Liquid Aluminum to End-Use Goods. Environmental Science & Technology, 47(7), 1 - 17, DOI: 10.1021/es304256s.
- 5.Fan, P., Cockcroft, S. L., Maijer, D. M., Yao, L., Reilly, C., Phillion, A. B., 2019. Porosity Prediction in A356 Wheel Casting. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science, 50(5), 1 - 15, DOI: 10.1007/s11663-019- 01642-9.
- 6.Irfan, M. A., Schwam, D., Karve, A., Ryder, R., 2012. Porosity reduction and mechanical properties improvement in die cast engine blocks. Materials Science and Engineering A, 535(15), 108 - 114, DOI: 10.1016/j.msea.2011.12.049.
- 7.Khalajzadeh, V., Beckermann, Ch., 2020. Simulation of Shrinkage Porosity Formation During Alloy Solidification. Metallurgical and Materials Transactions A, 51, 2239 - 2254, DOI: 10.1007/s11661-020-05699-z.
- 8.Kuchariková, L., Porosity in Aluminum Alloy Castings. Encyclopedia of Aluminum and Its Alloys. CRC Press, Boca Raton.
- 9.Lee. P.D., Chirazi, A., See, D., 2001. Modeling Microporosity in Aluminum-Silicon Alloys: A Review. Journal of Light Metals, 1(1), 15 - 30, DOI:10.1016/S1471-5317(00)00003- 1.
- 10.Li, S., Appelian, D., 2011. Hot tearing of aluminium alloys a critical literature review. International Journal of Mealcasting/Winter, 11, 23 - 40, DOI:10.1007/BF03355505.
- 11.Mahta, M., Emamy, M., Cao, X., Campbell, J., 2008. Overview of Β-Al5FeSi phase in Al-Si alloys. Nova Science Publishers, Inc. New York, USA.
- 12.Nicoletto, G., Konečná, R., Fintová, S., 2012. Characterization of microshrinkage casting defects of Al.-Si alloys by X-ray computed tomography and metallography. International Journal of Fatigue, 41, 39 - 46, DOI: 10.1016/j.ijfatigue.2012.01.006.
- 13.Paraskevas, D., Kellens, K., Dewulf, W., Duflou., 2013. Closed and Open Loop Recycling of Aluminium: A life Cycle Assessment perspective. IProceedings of 11th Global Conference on Sustainable Manufacturing. Innovative Solutions, 305 - 310.
- 14.Phillion, A. B., Cockroft, S. L., Lee, P. D., 2008. A new methodology for measurement of semi-solid constitutive behavior and its application to examination of as-cast porosity and hot tearing in aluminum alloys. Materials Science and Engineering: A, 491(1-2), 237 - 247, DOI: 10.1016/j.msea.2008.01.078.
- 15.Raabe, D., et al., 2022. Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Progress in Materials Science, 128, 1 - 150. DOI: 10.1016/j.pmatsci. 2022.100947.
- 16.Roy, N., Samuel, A. M., Samuel, F. H., 1996. Porosity formation in AI-9 Wt Pct Si-3 Wt Pct Cu alloy systems: Metallographic observations. Metallurgical and Materials Transactions A, 27, 415 - 429, DOI: 10.1007/BF02648419.
- 17.Samuel, F. H., 2017. On Porosity Formation in Al.-Si-Cu Cast Alloys. In: Ratvik, A. (eds) Light Metals 2017. The Minerals, Metals & Materials Series. Springer, Cham. DOI: 10.1007/978-3-319-51541-0_33.
- 18.Šurdová, Z., Kuchariková, L., Tillová, E., Pastierovičová, L., Chalupová, M., Uhríčik, M., Mikolajčík, M., 2022. The Influence of Fe Content on Corrosion Resistance of Secondary AlSi7Mg0.3 Cast Alloy with Increased Fe-content. In: Manufacturing technology: Engineering Science and Research Journal, 22(5), 598 - 604, DOI: 10.21062/mft.2022.073.
- 19.Taylor, J., A., 2004. The effect of iron in Al-Si casting alloys. Proceedings of 35th Australian Foundry Institute National Conference, 1 - 11, DOI: 10.1016/j.mspro.2012.06.004.
- 20.Taylor, J., A., 2012. Iron-containing intermetallic phases in Al-Si based casting alloys. Procedia Materials Science, 1, 19 - 33.
- 21.Timelli, G., Caliari, D., Rakhmonov, J., 2016. Influence of Process Parameters and Sr Addition on the Microstructure and Casting Defects of LPDC A356 Alloy for Engine Blocks. Journal of Material Science and Technology, 32(6), 515 - 523, DOI: 10.1016/j.jmst.2016.03.010.
- 22.Tuncay, T., Bayoğlu, S., 2017. The Effect of Iron Content on Microstructure and Mechanical Properties of A356 Cast Alloy. Metallurgical and Materials Transactions B, 48(2), 794 - 804, DOI: 10.1007/s11663-016-0909-1.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e494c147-4f02-4c51-b2c9-8d98ffbbb5a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.