Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Due to outstanding light shaping potential, freeform optical surfaces have been considered theoretically from centuries. Recently, they gained increased interest due to the availability of manufacturing technologies. Nevertheless, the design of freeform surfaces still becomes a challenge, associated with advanced mathematical concepts and significant computing power. In this work, a very interesting unification of theories is mentioned. It is shown how the problem of optimal redistribution of mass, analyzed in the 18th century, corresponds to the problem of optical beam shaping realized by freeform surface. Both issues are governed by the same partial differential equation. In the paper, a novel numerical algorithm for solving this partial differential equation is discussed. As an example, a design of freeform lens, capable of casting completely arbitrary shapes, is presented.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
399--412
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
Bibliografia
- [1] MONGE G., Mémoire sur la théorie des déblais et des remblais, Histoire de l’Académie Royale des Sciences de Paris, 1781.
- [2] VERSHIK A.M., Long history of the Monge–Kantorovich Transportation Problem, Sprienger, 2013.
- [3] ROCKAFELLAR R.T., Characterization of the subdifferentials of convex functions, Pacific Journal of Mathematics 17(3), 1966, pp. 497–510.
- [4] GLIMM T., OLIKER V., Optical design of two-reflector systems, the Monge–Kantorovich mass transfer problem and Fermat’s principle, Indiana University Mathematics Journal 53(5), 2004, pp. 1255–1277.
- [5] RUBINSTEIN J., WOLANSKY G., Intensity control with a free-form lens, Journal of the Optical Society of America A 24(2), 2007, pp. 463–469.
- [6] OLIKER V., Designing freeform lenses for intensity and phase control of coherent light with help from geometry and mass transport, Archive for Rational Mechanics and Analysis 201(3), 2011, pp. 1013–1045.
- [7] RIES H., MUSCHAWECK J., Tailored freeform optical surfaces, Journal of the Optical Society of America A 19(3), 2002, pp. 590–595.
- [8] FOURNIER F.R., CASSARLY W.J., ROLLAND J.P., Fast freeform reflector generation using source-target maps, Optics Express 18(5), 2010, pp. 5295–5304.
- [9] MICHAELIS D., SCHREIBER P., BRÄUER A., Cartesian oval representation of freeform optics in illumination systems, Optics Letters 36(6), 2011, pp. 918–920.
- [10] BRUNETON A., BÄUERLE A., WESTER R., STOLLENWERK J., LOOSEN P., High resolution irradiance tailoring using multiple freeform surfaces, Optics Express 21(9), 2013, pp. 10563–10571.
- [11] BÖSEL C., GROSS H., Ray mapping approach for the efficient design of continuous freeform surfaces, Optics Express 24(13), 2016, pp. 14271–14282.
- [12] ZEXIN FENG, LEI HUANG, GUOFAN JIN, MALI GONG, Designing double freeform optical surfaces for controlling both irradiance and wavefront, Optics Express 21(23), 2013, pp. 28693–28701.
- [13] BÖSEL C., WORKU N. G., GROSS H., Ray-mapping approach in double freeform surface design for collimated beam shaping beyond the paraxial approximation, Applied Optics 56(13), 2017, pp. 3679–3688.
- [14] RENGMAO WU, LIANG XU, PENG LIU, YAQIN ZHANG, ZHENRONG ZHENG, HAIFENG LI, XU LIU, Freeform illumination design: a nonlinear boundary problem for the elliptic Monge–Ampére equation, Optics Letters 38(2), 2013, pp. 229–231.
- [15] RENGMAO WU, PENG LIU, YAQIN ZHANG, ZHENRONG ZHENG, HAIFENG LI, XU LIU, A mathematical model of the single freeform surface design for collimated beam shaping, Optics Express 21(18), 2013, pp. 20974–20989.
- [16] PRINS C.R., TEN THIJE BOONKKAMP J.H.M., VAN ROOSMALEN J., JZERMAN W.L., TUKKER T.W., A Monge–Ampère-solver for free-form reflector design, SIAM Journal on Scientific Computing 36(3), 2014, pp. B640–B660.
- [17] BRIX K., HAFIZOGULLARI Y., PLATEN A., Designing illumination lenses and mirrors by the numerical solution of Monge–Ampère equations, Journal of the Optical Society of America A 32(11), 2015, pp. 2227–2236.
- [18] THOMPSON K.P., ROLLAND J.P., Freeform optical surfaces: a revolution in imaging optical design, Optics and Photonics News 23(6), 2012, pp. 30–35.
- [19] FANG F.Z., ZHANG X.D., WECKENMANN A., ZHANG G.X., EVANS C., Manufacturing and measurement of freeform optics, CIRP Annals 62(2), 2013, pp. 823–846.
- [20] GIMENEZ-BENITEZ P., MIÑANO J.C., BLEN J., ARROYO R.M., CHAVES J., DROSS O., HERNANDEZ M., FALICOFF W., Simultaneous multiple surface optical design method in three dimensions, Optical Engineering 43(7), 2004, pp. 1489–1502.
- [21] CHAVES J., Introduction to Nonimaging Optics, 2nd Ed., CRC Press, 2016.
- [22] DICKEY F.M., Laser Beam Shaping: Theory and Techniques, CRC Press, 2014.
- [23] MAZUMDER S., Numerical Methods for Partial Differential Equations, Elsevier Academic Press, 2017.
- [24] BORTZ J., SHATZ N., Iterative generalized functional method of nonimaging optical design, Proceedings of SPIE 6670, 2007, article ID 66700A.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e490a837-456e-48de-baa2-23ebff422feb