PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fluvial ecology disasters: the impact of the Gliwice Canal on the ecological crisis in the Oder River basin, Poland (2022)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In August 2022, the Oder River experienced an ecological disaster, resulting in the extinction of hundreds of aquatic organisms. Mass fish deaths also occurred during that time in the Gliwice Canal, located in southern Poland, which connects to the upper section of the Oder River. The aim of the article was to assess the impact of the waters from the Gliwice Canal on the water quality changes in the Oder River, as expressed by chloride, sulphate, nitrate, phosphate content, as well as its parameters such as conductivity, temperature, and pH. Statistical analyses were conducted based on our own research and a series of data collected by the Chief Inspectorate for Environmental Protection. Below the confluence of the Oder River with the waters of the canal, an increase in sulphates levels and a decrease in sodium content were observed. The other parameters remained unchanged. It was also noted that the magnitude of each parameter was significantly higher in the waters of the Gliwice Canal compared to the Oder River. The research conclusion is that there is no influence of the canals’ waters on the quality of the Oder River waters, both during the ecological disaster and afterwards. The presented research clearly indicates the need for separate analyses of flowing waters (with significantly higher salt and other pollutant dissolution capacity) and stagnant waters in water infrastructure (without water exchange).
Czasopismo
Rocznik
Strony
775--798
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
  • Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland
  • Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland
  • Doctoral School, University of Silesia in Katowice, Bankowa 14, 40-007 Katowice, Poland
  • Regional Water Management Authority in Gliwice, State Water Holding Polish Waters, Sienkiewicza 2, 44-100 Gliwice, Poland
  • Marine Chemistry and Biochemistry Department, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
  • Department of Geotechnical and Hydraulic Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza, 11/12, 80-233 Gdańsk, Poland
  • Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland
  • Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland
Bibliografia
  • 1. Absalon D, Matysik M, Woźnica A, Janczewska N (2023) Detection of changes in the hydrobiological parameters of the Oder River during the ecological disaster in July 2022 based on multi-parameter probe tests and remote sensing methods. Ecol Indic. https://doi.org/10.1016/j.ecolind.2023.110103
  • 2. Bazrkar M, Ziaei R, Zamani N, Eslamian SS (2013) Eutrophication: The major threat to water bodies. Conference: ecohydrology, biotechnology and engineering: towards the harmony between biogeosphere and society on the basis of long term ecosystem research at Lodz (Poland): 22.
  • 3. Bille L, Binato G, Gabrieli C, Manfrin A, Pascoli F, Pretto T, Toffan A, Pozza M, Angeletti R, Arcangeli G (2017) First report of a fish kill episode caused by pyrethroids in Italian freshwater. Forensic Sci Int 281:176-182. https://doi.Org/10.1016/j.forsciint.2017.10.040
  • 4. Bożek Z (1968) Kanał Gliwicki na usługach przemysłu. Zeszyty Gli¬wickie V I:114
  • 5. Carstea E, Baker A, Savastru R (2014) Comparison of river and canal water dissolved organic matter fluorescence within an urbanized catchment. Water 28:11-22. https://doi.org/10.1111/wej.12062
  • 6. Dąbkowski SL, Wesołowski P, Brysiewicz A, Humiczewski M (2017) Międzyodrze: an example of diverse economic and nature-related activities in the part of the lower Odra valley. J Water Land Dev 34:117-129. https://doi.org/10.1515/jwld-2017-0045
  • 7. Dewangan SK, Shrivastava S, Kadri M, Saruta S, Yadav S, Minj N (2023) Temperature effect on electrical conductivity (EC) and total dissolved solids (TDS) of water: a review. Int J Res Anal Rev 10:514-520
  • 8. Dissanayaka O, Pinsarani W, Sivaperumaan H, Athapattu B (2022) Assessing the impact of eutrophication and hourly discharge on dissolved oxygen fluctuation of urban water system linked to an estuary. J Eng Technol 10:40-51
  • 9. Gliwice RZGW (2015) Monografia Kanał Gliwicki. Agencja Reklamowa Formid Sp. Zo.o., Gliwice.
  • 10. Hamerla A, Pierzchała L (2016) Ocena warunków hydromorfologicznych zurbanizowanych dolin rzecznych na przykładzie zlewni Kłodnicy. Przegląd Naukowy Inżynieria i Kształtowanie Środowiska 25:83-99
  • 11. Handa BK (1990) Contamination of groundwaters by phosphates. BHU-JAL News, Q J Cent Groundw Board 5:24-36
  • 12. Hanjaniamin AE, Tabrizi MS, Babazadeh H (2023) Dissolved oxygen concentration and eutrophication evaluation in Yamchi dam reservoir, Ardabil. Iran Appl Water Sci 13:9-12. https://doi.org/10.1007/s13201-022-01786-1
  • 13. Hoyer MV, Watson DL, Willis DJ, Canfield DE (2009) Fish kills in Florida’s canals, creeks/rivers, and ponds/lakes. J Aquat Plant Manage 47:53-56
  • 14. Jabłońska B (2008) Estimating the water pollution in Potok Goławiecki Poland, based on selected water quality indicators. Arch Environ Prot 34:1
  • 15. James T, De La Cruz A (1989) Prymnesium parvum carter (chrysophyceae) as a suspect of mass mortalities of fish and shellfish communities in western texas. J Sci 41:429-430
  • 16. Kim J, Jones JR, Seo D (2021) Factors affecting harmful algal bloom occurrence in a river with regulated hydrology. J Hydrol Reg 33:100769. https://doi.org/10.1016/j.ejrh.2020.100769
  • 17. Kolada A et al. (2022) Wstępny raport Zespołu ds. sytuacji na rzece Odrze. IOŚ-PIB: 259. https://ios.edu.pl/aktualnosci/wstepny-raport-zespolu-ds-sytuacji-na-rzece-odrze/. Accessed: 17-11-2023.
  • 18. Kosek K, Kukliński P (2023) Impact of kelp forest on seawater chemistry-a review. Mar Pollut Bull 196:115655. https://doi.org/10.1016/j.marpolbul.2023.115655
  • 19. Kosek K, Polkowska Ż, Żyszka B, Lipok J (2016) Phytoplankton communities of polar regions-diversity depending on environmental conditions and chemical anthropopressure. J Environ Manage 171:243-259. https://doi.org/10.1016/j.jenvman.2016.01.026
  • 20. Kostecki M, Kozłowski J, Zych B (2001) Hydrochemical research on gliwice channel, selected physicochemical parameters of water quality. Arch Environ Prot 27:39-61
  • 21. Kozak K, Polkowska Ż, Stachnik Ł, Luks B, Chmiel S, Ruman M, Lech D, Kozioł K, Tsakovski S, Simeonov V (2016) Arctic catchment as a sensitive indicator of the environmental changes: distribution and migration of metals (Svalbard). Int J Environ Sci Technol 13:2779-2796. https://doi.org/10.1007/s13762-016-1137-6
  • 22. Lach R, Magdziorz A, Maksymiak-Lach H (2004) Zmiany jakości wód powierzchniowych zlewni Górnej Odry w wyniku restrukturyzacji górnictwa węgla kamiennego. Prace Naukowe GIG Górnictwo i Środowisko 3(2004):53-70
  • 23. Maakenthun KM, Herman EF, Bartsch AF (1945) A heavy mortality of fishes resulting from the decomposition of algae in the Yahara River Wisconsin. Trans Amer Fish Sea 75:175-180
  • 24. Marchowski D, Ławicki Ł (2023) Unprecedented mass mortality of aquatic organisms in the River Oder. Oryx 57:1-9. https://doi.org/10.1017/S0030605322001387
  • 25. Marchowski D, Neubauer G (2019) Kleptoparasitic strategies of mallards towards conspecifics and Eurasian Coots. Ardea 107:110- 114. https://doi.org/10.5253/arde.v107i1.a7
  • 26. Matysik M (2018) Wpływ zrzutów wód kopalnianych na odpływ rzek Górnośląskiego Zagłębia Węglowego. Wydawnictwo Uniwer¬sytetu Śląskiego, Katowice.
  • 27. Mishra P, Naik S, Babu PV, Pradhan U, Begum M, Kaviarasan T, Vashi A, Bandyopadhyay D, Ezhilarasan P, Panda US, Murthy MVR (2022) Algal bloom, hypoxia, and mass fish kill events in the backwaters of Puducherry, Southeast coast of India. Oceanologia 64:396-403. https://doi.org/10.1016/j.oceano.2021.11.003
  • 28. Neumann GE (1934) Der Oberschlesische Wanderer. Eine Wochenschrift fur Alle Stande 105/1934. Glewitz.
  • 29. Nocoń W, Kostecki M, Kozłowski J (2006) Charakterystyka Hydrochemiczna Rzeki Kłodnicy Ochrona Środowiska 28:39-44
  • 30. Richling A (2018) Regionalizacja - wybrane zagadnienia. Prace i Studia Geograficzne 63(1):9-18
  • 31. Roelke DL, Grover JP, Brooks BW, Glass J, Buzan D, Southard GM, Fries L, Gable GM, Schwierzke-Wade L, Byrd M, Nelson J (2011) A decade of fish-killing Prymnesium parvum blooms in Texas: roles of inflow and salinity. J Plankton Res 33:243-253. https://doi.org/10.1093/plankt/fbq079
  • 32. Sługocki Ł, Czerniawski R (2023) Water quality of the Odra (Oder) river before and during the ecological disaster in 2022: a warning
  • 33. to water management. Sustainability. https://doi.org/10.3390/su15118594
  • 34. Southard GM, Fries LT, Barkoh A (2010) Prymnesium Parvum: the texas experience. JAWRA 46:14-23. https://doi.org/10.1111Zj.1752-1688.2009.00387
  • 35. Szlauer-Łukaszewska A, Ławicki Ł, Engel J, Drewniak E, Ciężak K, Marchowski D (2024) Quantifying a mass mortality event in freshwater wildlife within the lower Odra river: insights from a large European river. Sci Total Environ 907:167898. https://doi.org/10.1016/j.scitotenv.2023.167898
  • 36. Szumińska D (2008) Sieć wodna okolic Bydgoszczy. Zasoby Przyrod¬nicze i Kulturowe Drogi Wodnej Wisła-Odra 2:16-27
  • 37. Weimin G (1983) The reason for the fish death at aquacultural experimental station at Ningxia and the distribution of Prymnesium parvum in Ningxia. J Dalian Fish Coll 1:43-48
  • 38. Woźnica A, Absalon D, Matysik M, Bąk M, Cieplok A, Halabowski D, Koczorowska A, Krodkiewska M, Libera M, Sierka E, Spyra A, Czerniawski R, Sługocki Ł, Łozowski B (2023) Analysis of the salinity of the Vistula river based on patrol monitoring and state environmental monitoring. Water. https://doi.org/10.3390/w15050838
  • 39. Yang XE, Wu X, Hao HL, He ZL (2008) Mechanisms and assessment of water eutrophication. J Zhejiang Univ Sci B 9:197-209. https://doi.org/10.1631/jzus.B0710626
  • 40. Yao X, Wang Z, Liu W, Zhang Y, Wang T, Li Y (2023) Pollution in river tributaries restricts the water quality of ecological water replenishment in the Baiyangdian watershed. China Environ Sci Pollut Res Int 30:51556-51570. https://doi.org/10.1007/s11356-023-25957-y
  • 41. Zhan Q, Teurlincx S, van Herpen F, Raman NV, Lurling M, Waajen G, de Senerpont Domis LN (2022) Towards climate-robust water quality management: testing the efficacy of different eutrophication control measures during a heatwave in an urban canal. Sci Total Environ 828:154421. https://doi.org/10.1016/j.scitotenv.2022.154421
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e48c32d2-7057-4167-8532-70c8d893c229
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.