Marcin STASIAK¹, Mariusz BOGACKI¹, Zbigniew GÓRSKI², Grzegorz MUSIELAK¹, Maria SZŁAPKA¹, Ewelina ŻYWEK¹

e-mail: marcin.a.stasiak@doctorate.put.poznan.pl

¹ Zakład Inżynierii Procesowej, Instytut Technologii i Inżynierii Chemicznej, Politechnika Poznańska, Poznań

² Zakład Chemii Fizycznej, Instytut Chemii i Elektrochemii Technicznej, Politechnika Poznańska, Poznań

Wyznaczanie współczynnika dyfuzji kompleksu kobaltu z kwasem di(2-etyloheksylo)fosforowym (D2EHPA) w toluenie z wykorzystaniem hiperspektralnego obrazowania cyfrowego oraz metody elementów skończonych

Wstęp

Procesy ekstrakcyjne znajdują coraz szersze zastosowanie w wielu gałęziach przemysłu. Wykorzystuje się je zarówno w procesach otrzymywania wielu metali, do wydzielania substancji organicznych, jak również w procesach utylizacji różnorodnych odpadów zawierających jony metali ciężkich [*Szymanowski, 1994*]. Obliczenia projektowe związane z ekstrakcją wymagają znajomości wielu parametrów charakteryzujących proces. Jednym z nich jest współczynnik dyfuzji powstających w procesach ekstrakcyjnych kompleksów.

Nowoczesną metodą wyznaczania współczynnika dyfuzji jest zastosowanie optymalizacyjnego rozwiązywania zagadnienia odwrotnego opisującego nieustalony proces dyfuzji [*Musielak i Kieca, 2009; Adamski i Pakowski, 2013*]. Tego typu procedura, wykorzystująca metodę elementów skończonych oraz optymalizację metodą *Monte Carlo* została zaproponowana w niniejszej pracy.

Badania doświadczalne

Aparatura

Część doświadczalną pracy zrealizowano stosując: jednorazowe kapilary szklane o objętości znamionowej 100 μl do mikropipet (*BLAU-BRAND*[®] *intraMARK*), podświetlacz światłowodowy (*backlighting panel with plastic optical fibers – Lumitex*, USA) połączony światłowodem ze sterowanym cyfrowo źródłem światła monochromatycznego – diodą LED, ultraczułą, 16 bitową, pracującą w stopniach szarości, kamerę *CCD Night Owl LB 981* współpracującą z programem *WinLight*.

Numeryczne przetwarzanie obrazów wspomagano opracowanym w *Politechnice Poznańskiej* zestawem narzędzi programistycznych *FCT v. 1.1* [*Górski i Malinska, 2003*].

Do termostatowania układu pomiarowego stosowano sterowany cyfrowo termostat zrealizowany w oparciu o elementy *Peltiera (PE-127-14-15-S ELFA)* i współpracujący z komputerem PC multimetr cyfrowy *Metex M3850* z termoparą typu K. Rozwiązanie takie pozwala stabilizować temperaturę próbki pomiarowej w zakresie 243÷303 K z dokładnością 1K.

Napełnianie kapilary i niezbędne manipulacje roztworami w kapilarze prowadzono z użyciem strzykawkowej pompy infuzyjnej.

Widma UV-Vis, na podstawie których wyznaczano długość fali dla maksimum absorpcji substancji dyfundującej wykonano na spektrometrze *JASCO V-530*.

Pomiary

Roztwór substancji dyfundującej był umieszczany w strzykawce sterowanej cyfrowo pompy infuzyjnej. Po połączeniu strzykawki z kapilarą pomiarową wypychano roztwór z strzykawki do momentu oderwania się z kapilary pierwszej kropli, teraz cofano tłok zasysając do kapilary niewielką, znaną ilość powietrza. Następnie umieszczano kapilarę w rozpuszczalniku uruchamiano mieszadło i termostat.

Po uzyskaniu wymaganej temperatury 20°C przesuwano tłok pompy infuzyjnej tak by wypchnąć z niej powietrze stanowiące barierę uniemożliwiającą mieszanie się obu cieczy. Natychmiast po uzyskaniu kontaktu badanego roztworu z rozpuszczalnikiem rozpoczynano fotografowanie kapilary. W czasie pomiaru wykonywano zdjęcia w odstępach czasu co 20 min. Czas rejestracji pojedynczego obrazu wynosił 50 ms (LED) 0,5 s (monochromator). Analiza uzyskanych danych przeprowadzona została przy długości fali 420 nm. Natężenie światła przechodzącego przez warstwę rozpuszczalnika, kapilarę i znajdujący się w niej roztwór odczytano z wszystkich zarejestrowanych obrazów stosując tę samą definicję obszarów obrazu do analizy – rejonów zainteresowania ROI (*Region-of-Interest*) Definicja ROI (Rys. 1) zawierała *n* kolejnych stykających się ze sobą obszarów, rozmieszczonych wzdłuż drogi dyfuzji (długości kapilary) o łącznej długości 54 mm.

Uzyskane obrazy analizowano zawsze w tym samym kierunku: ROI-1 znajduje się na otwartym końcu (początku) kapilary, ROI-n oznacza koniec kapilary. Dwa ROI umieszczone poza kapilarą w obszarze rozpuszczalnika stosowane były jako punkt odniesienia.

Model matematyczny

Proces jednowymiarowej dyfuzji niestacjonarnej opisywany jest równaniem transportu masy:

$$\frac{\partial c}{\partial t} = -\frac{\partial j}{\partial x} \tag{1}$$

gdzie: c – stężenie [mol/dm³], t – czas [s], j – gęstość strumienia molowego [mol/(m²s)], x – składowa położenia [m].

Gęstość strumienia molowego, zgodnie z prawem *Ficka*, jest proporcjonalna do gradientu ze stężenia substancji w danym ośrodku:

$$j = -D\frac{\partial c}{\partial x} \tag{2}$$

gdzie: *D* – współczynnik dyfuzji [m²/s]. Zgodnie z przeprowadzonym eksperymentem na podane równania nałożone są dwa warunki brzegowe:

$$j|_{x=0} = f(t) \qquad j|_{x=1} = 0$$
(3)
oraz warunek początkowy:

$$c|_{t=0} = c_0 \tag{4}$$

Założono stałą wartość współczynnika dyfuzji *D*. Biorąc dowolną funkcję ciągłą $\varphi(x)$, posiadającą ciągłą pochodną pierwszego rzędu poza skończoną liczbą punktów, otrzymano sformułowanie uogólnione (słabe) równ. (1):

$$\int_{0}^{l} \varphi \frac{\partial c}{\partial t} dx = -\int_{0}^{l} \varphi \frac{\partial j}{\partial x} dx$$
(5)

gdzie: *l* – długość kapilary [m].

Przyjmuje się, że rozwiązaniem danego problemu jest funkcja c(x, t) o postaci [*Zienkiewicz i in., 2005*]:

$$c(x,t) = \sum_{i=1}^{n} c_i(t) \varphi_i(x)$$
(6)

Po wprowadzeniu rozwiązania (6) do równ. (5) otrzymano układ równań różniczkowych zwyczajnych:

$$\sum_{i=1}^{N} \frac{dc_i}{dt} A_{ij} + D \sum_{i=1}^{N} c_i B_{ij} = \varphi_j |_{x=0} f(t) \quad j = 1, 2, ..., N$$
(7)

INŻYNIERIA I APARATURA CHEMICZNA

gdzie:

$$= \int_{0}^{l} \varphi_{i} \varphi_{j} dx \tag{8}$$

 $B_{ij} = \int_{0}^{0} \int_{0}^{l} \frac{d\varphi_i}{dx} \frac{d\varphi_j}{dx} dx$ (9)

Pochodną po czasie przybliżano bezwzględnie stabilnym schematem *Cranka-Nicolsona* otrzymując równanie:

 A_{ii}

$$\sum_{i=1}^{N} \frac{c_i^{n+1} - c_i^n}{\Delta t} A_{ij} + \frac{1}{2D} \sum_{i=1}^{N} (c_i^{n+1} + c_i^n) B_{ij} = \varphi_j \big|_{x=0} \frac{1}{2} (f^{n+1} + f^n) \quad (10)$$

Po uporządkowaniu odpowiednich członów równania uzyskano układ równań liniowych:

gdzie:

$$\sum_{i=1}^{n} M_{ij} c_j^{n+1} = Y_j \tag{11}$$

$$M_{ij} = A_{ij} + D \frac{\Delta t}{2} B_{ij} \tag{12}$$

$$Y_{j} = \sum_{i=1}^{N} c_{i}^{n} \left(A_{ij} - D \frac{\Delta t}{2} B_{ij} \right) + \varphi_{j} \Big|_{x=0} \frac{\Delta t}{2} (f^{n+1} + f^{n})$$
(13)

Obszar całkowania podzielono na k odcinków. Następnie w każdym z odcinków wprowadzono lokalny układ współrzędnych, tak że:

$$\eta = \frac{2x - (x_k + x_{k-1})}{x_k - x_{k-1}} \tag{14}$$

Funkcje próbne przyjęto w postaci:

$$\varphi_1 = \frac{1}{2}\eta(\eta - 1) \quad \varphi_2 = -(\eta - 1)(\eta + 1) \quad \varphi_3 = \frac{1}{2}\eta(\eta + 1) \quad (15)$$

Na postawie danych doświadczalnych uzyskano zależność gęstości strumienia masy na brzegu jako funkcji czasu (3), a następnie otrzymaną krzywą aproksymowano eliminując wahania funkcji wynikające z błędów pomiarowych:

$$j = \frac{\Delta l}{\Delta t} \sum_{j=1}^{N} (c_j^{n+1} - c_j^n)$$
(16)

Podczas obliczeń w każdym kroku czasowym wyliczany był wektor strumienia. W trakcie rozwiązywania liczony był błąd odchylenia rozwiązania numerycznego od danych doświadczalnych wg formuły:

$$\sigma = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} (c_j^{(i)} - c_j^{*(i)})^2}{M}$$
(17)

gdzie: M – liczba kroków czasowych [-], N – liczba elementów [-], $c_j^{(i)}$ – wartość doświadczalna stężenia [mol/dm³], $c_j^{*(i)}$ – wartość rozwiązania numerycznego stężenia [mol/dm³].

Szukanie optymalnego współczynnika dyfuzji odbywa się poprzez minimalizację ww. błędu z wykorzystaniem metody *Monte Carlo* z jednoczesnym zawężaniem przedziału poszukiwań podczas kolejnych iteracji. Błąd dla różnych czasów symulacji znormalizowano, by można było porównać otrzymane wyniki.

Wyniki symulacji

Symulacje procesu dyfuzji prowadzono dla różnych czasów (500, 1000, ..., 4500 min). W tab. 1 porównano obliczone współczynniki dyfuzji dla różnych czasów symulacji.

Tab. 1. Zależność obliczonego współczynnika dyfuzji od czasu prowadzenia symulacji

Czas prowadzenia symulacji [s]	Obliczony współczynnik dyfuzji ·10 ⁹ [m ² /s]	Błąd rozwiązania $\cdot 10^4$
30000	6,50	5,61
60000	6,72	4,97
90000	6,45	4,57
120000	6,10	4,22
150000	5,62	4,16
180000	5,13	4,39
210000	4,77	4,76
240000	4,45	5,17
270000	4,15	5,29

Rys. 2. Zależność rozkładu stężeń od czasu w kapilarze (doświadczenie)

Rys. 3. Zależność rozkładu stężeń od czasu w kapilarze (symulacja)

Rozwiązanie przybliżone o najmniejszym błędzie otrzymano dla czasu 2500 min.

Na rys. 2 i 3 przedstawiono zależność rozkładu stężeń w kapilarze od czasu otrzymaną na drodze doświadczenia oraz krzywe uzyskane na drodze symulacji.

Wnioski

Przedstawiono metodę określenia współczynnika dyfuzji. Metodę zastosowano do wybranego kompleksu kobaltu w toluenie.

Z otrzymanych wyników można wnioskować, iż założenie stałego współczynnika dyfuzji nie pozwala na dobre przybliżenie funkcji rozkładu stężenia w czasie w kapilarze.

Skutek zależności współczynnika dyfuzji od stężenia widoczny jest w szczególności dla końcowych faz procesu, gdzie nachylenie krzywej najbardziej odbiega od danych doświadczalnych.

LITERATURA

- Adamski R., Pakowski Z., 2013. Identification of effective diffusivities in anisotropic material of pine wood during drying with superheated steam. *Drying Tech.*, **31**, nr 3, 264-268. DOI: 10.1080/07373937.2012.717152
- Górski Z., Malińska J., 2007. A study of diffusion process in liquids using Hyperspectral Digital Imaging. *Microscopy and Analysis* (UK), 21, nr 2 9-11.
- Górski Z., Bembnista T., Floryszak-Wieczorek J., Domański M., Sławińki J., 2003. Computer-aided photometric analysis of dynamic digital bioluminescent images. [w:] Pluta M., Szyjer M. (Eds). Lightmetry 2002: Metrology and testing techniques using light. Proceedings of SPIE, **5064**. DOI:10.1117/12.501362
- Musielak G., Kieca A., 2009. Temperature dependence of the moisture diffusion coefficient in a high moisture content material. *Chem. Proc. Eng.*, 30, 231–242
- Szymanowski J., 1994. Rozwój procesów hydrometalurgicznych do odzysku miedzi i niklu. *Rudy i Metale Nieżelazne*, **39**, 63-65
- Zienkiewicz O.C., Taylor R.L., Zhu J.Z., 2005. The finite element method: Its basis and fundamentals. 6th ed., Elsevier

Praca została zrealizowana w ramach projektów badawczych 32-127/13 DS-PB oraz 32-376/2013 DS-PB Politechniki Poznańskiej.