PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Silicon carbide nanocomposites reinforced with disordered graphitic carbon formed in situ through oxidation of Ti3C2 MXene during sintering

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article describes the manufacturing of silicon carbide composites with the addition of quasi-two-dimensional titanium carbide Ti3C2, known as MXene. The composites were obtained by the powder metallurgy technique, consolidated with the use of the Spark Plasma Sintering method at 1900 °C and dwelled for 30 min. The influence of the Ti3C2 MXene addition on the microstructure and mechanical properties of the composites was investigated. The structure of the MXene phase after the sintering process was also analyzed. The results showed a significant increase (almost 50%) of fracture toughness for composites with the addition of 0.2 wt% Ti3C2 MXene. In turn, the highest hardness, 23.2 GPa, was noted for the composite with the addition of the 1.5 wt% Ti3C2 MXene phase. This was an increase of over 10% in comparison to the reference sample. The analysis of chemical composition and observations using a transmission electron microscope showed that the Ti3C2 MXene phase oxidizes during sintering, resulting in the formation of crystalline, highly defected, disordered graphite structures. The presence of these structures in the microstructure, similarly to graphene, significantly affects the hardness and fracture toughness of silicon carbide.
Rocznik
Strony
1--12
Opis fizyczny
Bibliogr. 55 poz., rys., wykr.
Twórcy
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
autor
  • Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
  • Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
  • Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
autor
  • Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Cracow, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
Bibliografia
  • [1] Gubernat A, Stobierski L, Łabaj P. Microstructure and mechanical properties of silicon carbide pressureless sintered with oxide additives. J Eur Ceram Soc. 2007;27:781–9.
  • [2] Rączka M, Górny G, Stobierski L, Rożniatowski K. Effect of carbon content on the microstructure and properties of silicon carbide-based sinters. Mater Charact. 2001;46:245–9.
  • [3] Petrus M, Wozniak J, Cygan T, Adamczyk-Cieslak B, Kostecki M, Olszyna A. Sintering behaviour of silicon carbide matrix composites reinforced with multilayer graphene. Ceram Int. 2017;43:5007–13.
  • [4] Guillard F, Allemand A, Lulewicz JD, Galy J. Densification of SiC by SPS-effects of time, temperature and pressure. J Eur Ceram Soc. 2007;27:2725–8.
  • [5] Omori M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater Sci Eng A. 2000;287:183–8.
  • [6] Munir ZA, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci. 2006;41:763–77.
  • [7] Vera MC, Ramirez-Rico J, Martinez-Fernandez J, Singh M. Sliding wear resistance of sintered SiC-fiber bonded ceramics. Int J Refract Met Hard Mater. 2015;49:232–9.
  • [8] Patent US. Silicon carbide reinforced silicon carbide composite. 2001.
  • [9] Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–91.
  • [10] Porwal H, Tatarko P, Saggar R, Grasso S, Kumar Mani M, Dlouhý I, et al. Tribological properties of silica–graphene nano-platelet composites. Ceram Int. 2014;40:12067–74.
  • [11] Hvizdoš P, Dusza J, Balázsi C. Tribological properties of Si3N4-graphene nanocomposites. J Eur Ceram Soc. 2013;33:2359–64.
  • [12] Porwal H, Tatarko P, Grasso S, Khaliq J, Dlouhý I, Reece MJ. Graphene reinforced alumina nano-composites. Carbon. 2013;64:359–69.
  • [13] Porwal H, Grasso S, Reece MJ. Review of graphene-ceramic matrix composites. Adv Appl Ceram. 2013;112:443–54.
  • [14] Nowotny VH. Strukturchemie einiger Verbindungen der Über-gangsmetalle mit den elementen C, Si, Ge, Sn. Prog Solid State Chem. 1971;5:27–70.
  • [15] Nowotny H, Boller H, Beckmann O. Alloy phases crystallizing with structures which occur with non-metallic compounds. J Solid State Chem. 1970;2:462–71.
  • [16] Barsoum MW, El-Raghy T. The MAX phases: unique new carbide and nitride materials: tertiary ceramics are soft and machinable, yet heat-tolerant, strong and lighweight. Am Sci. 2001;89:334–43.
  • [17] Barsoum MW. MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates. Prog Solid State Chem. 2000;28:201–81.
  • [18] Naguib M, Unocic RR, Armstrong BL, Nanda J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides ‘mXenes.’ Dalt Trans. 2015;44:9353–8.
  • [19] Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23:4248–53.
  • [20] Rozmysłowska-Wojciechowska A, Szuplewska A, Wojciechowski T, Poźniak S, Mitrzak J, Chudy M, et al. A simple, low-cost and green method for controlling the cytotoxicity of MXenes. Mater Sci Eng C. 2020;111:110790.
  • [21] Szuplewska A, Rozmysłowska-Wojciechowska A, Poźniak S, Wojciechowski T, Birowska M, Popielski M, et al. Multilayered stable 2D nano-sheets of Ti2NTx MXene: synthesis, characterization, and anticancer activity. J Nanobiotechnology. 2019;17:114.
  • [22] Rasool K, Helal M, Ali A, Ren CE, Gogotsi Y, Mahmoud KA. Antibacterial activity of Ti3C2Tx MXene. ACS Nano. 2016;10:3674–84.
  • [23] Liu Z, Zhao M, Lin H, Dai C, Ren C, Zhang S, et al. 2D magnetic titanium carbide MXene for cancer theranostics. J Mater Chem B. 2018;6:3541–8.
  • [24] Naguib M, Come J, Dyatkin B, Presser V, Taberna PL, Simon P, et al. MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem commun. 2012;16:61–4.
  • [25] Wang X, Kajiyama S, Iinuma H, Hosono E, Oro S, Moriguchi I, et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat Commun. 2015;6:1–6.
  • [26] Xiong D, Li X, Bai Z, Lu S. Recent advances in layered Ti 3 C 2 T x MXene for electrochemical energy storage. Small. 2018;14:1703419.
  • [27] Peng YY, Akuzum B, Kurra N, Zhao MQ, Alhabeb M, Anasori B, et al. All-MXene (2D titanium carbide) solid-state micro supercapacitors for on-chip energy storage. Energy Environ Sci. 2016;9:2847–54.
  • [28] Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2:1–17.
  • [29] Kalambate PK, Gadhari NS, Li X, Rao Z, Navale ST, Shen Y, et al. Recent advances in MXene–based electrochemical sensors and biosensors. Trends Anal Chem. 2019;120:115643.
  • [30] Kim SJ, Koh HJ, Ren CE, Kwon O, Maleski K, Cho SY, et al. Metallic Ti3C2Tx mxene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano. 2018;12:986–93.
  • [31] Carey M, Hinton Z, Sokol M, Alvarez NJ, Barsoum MW. Nylon-6/Ti3C2Tz MXene nanocomposites synthesized by in situ ring opening polymerization of ε-caprolactam and their water transport properties. ACS Appl Mater Interfaces. 2019;11:20425–36.
  • [32] Sheng X, Zhao Y, Zhang L, Lu X. Properties of two-dimensional Ti3C2 MXene/thermoplastic polyurethane nanocomposites with effective reinforcement via melt blending. Compos Sci Technol. 2019;181:107710.
  • [33] Zhi W, Xiang S, Bian R, Lin R, Wu K, Wang T, et al. Study of MXene-filled polyurethane nanocomposites prepared via an emulsion method. Compos Sci Technol. 2018;168:404–11.
  • [34] Ling Z, Ren CE, Zhao MQ, Yang J, Giammarco JM, Qiu J, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci USA. 2014;111:16676–81.
  • [35] Liu R, Li W. High-thermal-stability and High-thermal-conductivity Ti3C2T x MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega. 2018;3:2609–17.
  • [36] Cao Y, Deng Q, Liu Z, Shen D, Wang T, Huang Q, et al. Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene. RSC Adv. 2017;7:20494–501.
  • [37] Hu J, Li S, Zhang J, Chang Q, Yu W, Zhou Y. Mechanical properties and frictional resistance of Al composites reinforced with Ti3C2Tx MXene. Chin Chem Lett. 2020;31:996–9.
  • [38] Guo L, Zhang Y, Zhang G, Wang Q, Wang T. MXene-Al2O3 synergize to reduce friction and wear on epoxy-steel contacts lubricated with ultra-low sulfur diesel. Tribol Int. 2021. https:// doi. org/ 10. 1016/j. tribo int. 2020. 106588.
  • [39] Ronchi RM, Arantes JT, Santos SF. Synthesis, structure, properties and applications of MXenes: current status and perspectives. Ceram Int. 2019;45:18167–88.
  • [40] Fei M, Lin R, Lu Y, Zhang X, Bian R, Cheng J, et al. MXene-reinforced alumina ceramic composites. Ceram Int. 2017;43:17206–10.
  • [41] Cygan T, Wozniak J, Petrus M, Lachowski A, Pawlak W, Adamczyk-Cieślak B, et al. Microstructure and mechanical properties of alumina composites with addition of structurally modified 2D Ti3C2 (MXene) phase. Materials. 2021;14:829.
  • [42] Guo J, Legum B, Anasori B, Wang K, Lelyukh P, Gogotsi Y, et al. Cold sintered ceramic nanocomposites of 2D MXene and zincoxide. Adv Mater. 2018;30:1801846.
  • [43] Wozniak J, Petrus M, Cygan T, Jastrzębska A, Wojciechowski T, Ziemkowska W, et al. Silicon carbide matrix composites reinforced with two-dimensional titanium carbide-Manufacturing and properties. Ceram Int. 2019;45:6624–31.
  • [44] Wozniak J, Petrus M, Cygan T, Lachowski A, Adamczyk-Cieślak B, Moszczyńska D, et al. Influence of mxene (Ti3C2) phase addition on the microstructure and mechanical properties of silicon nitride ceramics. Materials. 2020;13:1–11.
  • [45] Ding J, Chen F, Chen J, Liang J, Kong J. MXene-derived TiC/SiBCN ceramics with excellent electromagnetic absorption and high-temperature resistance. J Am Ceram Soc. 2021;104:1772–84.
  • [46] Jastrzębska AM, Szuplewska A, Wojciechowski T, Chudy M, Ziemkowska W, Chlubny L, et al. In vitro studies on cytotoxicity of delaminated Ti3C2 MXene. J Hazard Mater. 2017;339:1–8.
  • [47] Petrus M, Wozniak J, Jastrzębska A, Kostecki M, Cygan T, Olszyna A. The effect of the morphology of carbon used as a sintering aid on the sinterability of silicon carbide. Ceram Int. 2018;44:7020–5.
  • [48] Wojciechowski T, Rozmysłowska-Wojciechowska A, Matyszczak G, Wrzecionek M, Olszyna A, Peter A, et al. Ti2C MXene modified with ceramic oxide and noble metal nanoparticles: synthesis, morphostructural properties, and high photocatalytic activity. Inorg Chem. 2019;58:7602–14.
  • [49] Cygan T, Wozniak J, Kostecki M, Petrus M, Jastrzębska A, Ziemkowska W, et al. Mechanical properties of graphene oxide reinforced alumina matrix composites. Ceram Int. 2017;43:6180–6.
  • [50] Feng W, Luo H, Wang Y, Zeng S, Deng L, Zhou X, et al. Ti3C2 MXene: a promising microwave absorbing material. RSC Adv. 2018;8:2398–403.
  • [51] Naguib M, Mashtalir O, Lukatskaya MR, Dyatkin B, Zhang C, Presser V, et al. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem Commun. 2014;50:7420–3.
  • [52] Lotfi R, Naguib M, Yilmaz DE, Nanda J, Van Duin ACT. A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J Mater Chem A. 2018;6:12733–43.
  • [53] Petrus M, Wozniak J, Cygan T, Kostecki M, Olszyna A. The effect of the morphology of carbon used as a sintering aid on the mechanical properties of silicon carbide. Ceram Int. 2019;45:1820–4.
  • [54] Stobierski L, Gubernat A. Sintering of silicon carbideI. Eff Carbon Ceram Int. 2003;29:287–92.
  • [55] Li Z, Wang L, Sun D, Zhang Y, Liu B, Hu Q, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater Sci Eng B Solid State Mater Adv Tech. 2015;191:33–40.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e485f176-60e3-4f02-a15d-37ca7c385028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.