PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Self tuning filter and fuzzy logic control of shunt active power filter for eliminates the current harmonics constraints under unbalanced source voltages and loads conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Shunt active power filters (SAPFs) are modern filtering technologies for source current harmonic elimination and source reactive power compensation of nonlinear loads. In the case of normally balanced source voltages, the SAPFs are controlled to eliminate a wide range of source current harmonics and compensate the source reactive power generated by non-linear loads to provide source current functions with maximum power factor. However, if source voltages are unbalanced and/or distorted, these control objectives cannot be achieved, which impacts the SAPFs performances. In the present paper, we propose a new modification to extend the stable dynamic range and to enhance the transient response of a classical phase locked loop (CPLL). An enhanced phase locked loop (EPLL) based on a self tuning filter (STF) and fuzzy logic control (FLC) associated with SRF theory are used in four leg shunt active power filter control under unbalanced source voltages and nonlinear loads. The aim is to enable the SAPFs to reach a higher compensation level of reactive power and current harmonics for all cases of source voltages and nonlinear loads for the limits specified in IEEE Std. 519. The success, robustness, and effectiveness of proposed control circuits are demonstrated through simulation, using Sim Power Systems and S-Function of MATLAB/SIMULINK.
Rocznik
Strony
1--19
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • ICEPS Laboratory, Department of Electrical Engineering, University of Sidi-Bel-Abbes, Algeria
  • Faculty of Science and Technology, University of Bordj Bou Arreridj, Algeria
  • ICEPS Laboratory (Intelligent Control & Electrical Power Systems). Djillali Liabes, University of Sidi Bel-Abbes, Algeria
Bibliografia
  • [1] H. Ouadi, A. A. Chihab, F. Giri, Adaptive nonlinear control of threephase shunt active power filters with magnetic saturation, International Journal of Electrical Power & Energy Systems 69 (2015) 104–115.
  • [2] H. Yi, F. Zhuo, Y. Zhang, Y. Li, W. Zhan, W. Chen, J. Liu, A sourcecurrent- detected shunt active power filter control scheme based on vector resonant controller, IEEE Transactions on industry applications 50 (3) (2014) 1953–1965.
  • [3] M. R. Miveh, M. F. Rahmat, A. A. Ghadimi, M. W. Mustafa, Control techniques for three-phase four-leg voltage source inverters in autonomous microgrids: A review, Renewable and Sustainable Energy Reviews 54 (2016) 1592–1610.
  • [4] M. A. Mulla, R. Chudamani, A. Chowdhury, A novel control method for series hybrid active power filter working under unbalanced supply conditions, International Journal of Electrical Power & Energy Systems 64 (2015) 328–339.
  • [5] P. Kanjiya, V. Khadkikar, H. H. Zeineldin, Optimal control of shunt active power filter to meet ieee std. 519 current harmonic constraints under nonideal supply condition, IEEE Transactions on industrial electronics 62 (2) (2015) 724–734.
  • [6] M. R. Miveh, M. F. Rahmat, A. A. Ghadimi, M. W. Mustafa, Control techniques for three-phase four-leg voltage source inverters in autonomous microgrids: A review, Renewable and Sustainable Energy Reviews 54 (2016) 1592–1610.
  • [7] S. Kumar, B. Singh, Control of 4-leg vsc based dstatcom using modified instantaneous symmetrical component theory, in: Power Systems, 2009. ICPS’09. International Conference on, IEEE, 2009, pp. 1–6.
  • [8] A. Chebabhi, M.-K. Fellah, M.-F. Benkhoris, 3d space vector modulation control of four-leg shunt active power filter using pq0 theory, Revue Roumaine des Sciences Techniques-Serie Électrotechnique et Énergétique 60 (2) (2015) 185–194.
  • [9] S. Po-Ngam, The simplified control of three-phase four-leg shunt active power filter for harmonics mitigation, load balancing and reactive power compensation, in: Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2014 11th International Conference on, IEEE, 2014, pp. 1–6.
  • [10] P. Thirumoorthi, N. Yadaiah, Design of current source hybrid power filter for harmonic current compensation, Simulation Modelling Practice and Theory 52 (2015) 78–91.
  • [11] R. Patel, A. K. Panda, Real time implementation of pi and fuzzy logic controller based 3-phase 4-wire interleaved buck active power filter for mitigation of harmonics with id–iq control strategy, International Journal of Electrical Power & Energy Systems 59 (2014) 66–78.
  • [12] P. Kanjiya, V. Khadkikar, H. H. Zeineldin, A noniterative optimized algorithm for shunt active power filter under distorted and unbalanced supply voltages, IEEE Transactions on Industrial Electronics 60 (12) (2013) 5376–5390.
  • [13] K. Bhattacharjee, Harmonic mitigation by srf theory based active power filter using adaptive hysteresis control, in: Power and Energy Systems Conference: Towards Sustainable Energy, 2014, IEEE, 2014, pp. 1–6.
  • [14] M. V. M. Kumar, M. K. Mishra, Three-leg inverter-based distribution static compensator topology for compensating unbalanced and nonlinear loads, IET Power Electronics 8 (11) (2015) 2076–2084.
  • [15] A. Chebabhi, M. Fellah, A. Kessal, M. Benkhoris, Comparative study of reference currents and dc bus voltage control for three-phase fourwire four-leg sapf to compensate harmonics and reactive power with 3d svm, ISA transactions 57 (2015) 360–372.
  • [16] A. Chebabhi, M. K. Fellah, A. Kessal, M. F. Benkhoris, Four leg dstatcom based on synchronous reference frame theory with enhanced phase locked loop for compensating a four wire distribution network under unbalanced pcc voltages and loads, Journal of Power Technologies 96 (1) (2016) 15.
  • [17] N. Daou, F. Khatounian, A combined phase locked loop technique for grid synchronization of power converters under highly distorted grid conditions, in: Multidisciplinary Conference on Engineering Technology (IMCET), IEEE International, IEEE, 2016, pp. 108–114.
  • [18] M. Benchouia, I. Ghadbane, A. Golea, K. Srairi, M. E. H. Benbouzid, Implementation of adaptive fuzzy logic and pi controllers to regulate the dc bus voltage of shunt active power filter, Applied soft computing 28 (2015) 125–131.
  • [19] L. Stastny, R. Mego, L. Franek, Z. Bradac, Zero cross detection using phase locked loop, IFAC-PapersOnLine 49 (25) (2016) 294–298.
  • [20] Z. Guo, Q. Zhang, C. Zhang, J. Pang, Z. Yan, A new method of double fundamental frequency phase-locked loop based on two integrators, in: Instrumentation & Measurement, Computer, Communication and Control (IMCCC), 2016 Sixth International Conference on, IEEE, 2016, pp. 659–664.
  • [21] M. Karimi-Ghartemani, Linear and pseudolinear enhanced phasedlocked loop (epll) structures, IEEE transactions on industrial electronics 61 (3) (2014) 1464–1474.
  • [22] P. T. Lanza II, Y. B. Shtessel, J. L. Stensby, Improved acquisition in a phase-locked loop using sliding mode control techniques, Journal of the Franklin Institute 352 (10) (2015) 4188–4204.
  • [23] F. Lei, M. H. White, A study of the low frequency noise (lfn) in reference injected phase locked loops (pll-ri), in: Circuits and Systems Conference (DCAS), 2016 IEEE Dallas, IEEE, 2016, pp. 1–4.
  • [24] M. Qasim, P. Kanjiya, V. Khadkikar, Artificial-neural-network-based phase-locking scheme for active power filters, IEEE Transactions on Industrial Electronics 61 (8) (2014) 3857–3866.
  • [25] A. Chebabhi, M. K. Fellah, A. Kessal, M. F. Benkhoris, Power quality improvement using a four leg sapf based on phase locked loop with multi variable filter under unbalanced source voltages and loads, Proceedings of International Conference on Automatic, Telecommunication and Signals ICATS 2015 5.
  • [26] H. Golwala, R. Chudamani, Comparative study of switching signal generation techniques for three phase four wire shunt active power filter, in: Electric Machines & Drives Conference (IEMDC), 2011 IEEE International, IEEE, 2011, pp. 1409–1414.
  • [27] J. L. Stensby, Phase-locked loops: Theory and applications, CRC Press, 1997.
  • [28] B. Singh, S. K. Dube, S. R. Arya, An improved control algorithm of dstatcom for power quality improvement, International Journal of Electrical Power & Energy Systems 64 (2015) 493–504.
  • [29] S. Hou, J. Fei, Adaptive fuzzy backstepping control of three-phase active power filter, Control Engineering Practice 45 (2015) 12–21.
  • [30] R. Ponpandi, D. Durairaj, A novel fuzzy-adaptive hysteresis controller based three phase four wire-four leg shunt active filter for harmonic and reactive power compensation, Energy and Power Engineering 3 (4) (2011) 422–435.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e483a5f4-d3bc-4c2c-94e5-7b9e6672c384
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.