PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Post-Heat Treatment on the Impact Toughness and Crack Propagation Mechanism of AISI D2 Tool Steel Manufactured by Direct Energy Deposition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigated the effect of heat treatment on the microstructure and impact toughness property of AISI D2 manufactured with direct energy deposition (DED) and compared the results with conventional wrought material. The fracture crack propagation behavior was examined in connection with microstructures through fracture surface analysis. AISI D2 manufactured with DED had a eutectic structure that turned into a net-type carbide after heat treatment, and Cr-rich needle-type secondary carbide was observed. Impact toughness of DED AISI D2 measured 2.0 J/cm2 in the as-built sample and 1.1 J/cm2 in the heat-treated sample. Compared to a wrought heat-treated AISI D2, DED AISI D2 had relatively low impact toughness. DED AISI D2 and wrought material had different crack propagation mechanisms. In DED AISI D2, the eutectic structure and net-type carbide boundary were identified as the major microstructural factor decreasing impact toughness.
Twórcy
  • Inha University, Department of Materials Science and Engineering, Incheon 22212, Korea
autor
  • Inha University, Department of Materials Science and Engineering, Incheon 22212, Korea
autor
  • Changsung Corp., Incheon, 21628, Korea
  • Maxrotech Corp., Daegu, 42703, Korea
autor
  • Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, Korea
autor
  • Inha University, Department of Materials Science and Engineering, Incheon 22212, Korea
Bibliografia
  • [1] D. Das, A.K. Dutta, K.K. Ray, Philos. Mag. 89, 55-76 (2009).
  • [2] I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies 245-268 (2015).
  • [3] P.D. Khatibi, A.B. Phillion, H. Henein, Powder Metall. 57 (1), 70-78 (2014).
  • [4] J.S. Park, M.G. Lee, Y.J. Cho, J.H. Sung, M.S. Jeong, S.K. Lee, Y.J. Choi, D.H. Kim, Met. Mater. Int. 22 (1), 143-147 (2016).
  • [5] G.Y. Baek, G.Y. Shin, K.Y. Lee, D.S. Shim, Metals 9 (3), 282 (2019).
  • [6] H. Torkamani, Sh. Raygan, J. Rassizadehghani, Mater. Design 54, 1049-1055 (2014).
  • [7] N.B. Dhokey, C. Thakur, P. Ghosh, Tribol. T. 64 (1), 91-100 (2021).
  • [8] S. Kang, M. Kim, S.J. Lee, Metals 7 (1), 12 (2017).
  • [9] X.S. Yu, C. Wu, R.X. Shi, Y.S. Yuan, Adv. Manuf. 9, 520-537 (2021).
  • [10] X. Lu, Z. Yang, D. Qian, J. Lan, L. Hua, J. Mater. Res. 15, 2429-2438 (2021).
  • [11] N. Kumar, N. Arora, S.K. Goel, Mat. Sci. Eng. A. 771, 138542 (2020).
  • [12] F. Arieta, E.B.M. Netto, A. Reguly, W.K. Pannes, U. Beutler, F. van Soest, C. Ernst, J. ASTM, Int. 8 (9), 1-12 (2011).
  • [13] H.B Chi, Y. Lu, G.M. Xie, Z.A. Luo, C.X. Wang, F.B. Kabwe, Z.G. Liu, X. Tang, Mat. Sci. Eng. A. 798, 140102 (2020).
Uwagi
1. This research was supported by the Ministry of Trade, Industry, and Energy (MOTIE) and Korea Evaluation Institute of Industrial Technology (KEIT) (No. 20011279).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e480da13-9b9c-4c28-8a0e-753f96b35f84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.