PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Relationship Between the Heats of Formation and the Molecular Electrostatic Potentials of Polyazaarenes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to characterize the explosive properties of high-nitrogen, energetic compounds, the heats of formation, either in the gas or the solid state, are often used as preliminary data. Their relationship to the number of nitrogen atoms involved is usually known, so exploring it cannot furnish any new information. However, the very promising, quantitative structure property relationship (QSPR) approach utilizes the molecular surface electrostatic potential V(r). We have therefore performed calculations for 12 azines and 10 azoles by the DFT B3PW91/cc-pVTZ method, and constructed their gas phase heats of formation Δf H°(298,g) by means of the isodesmic reaction approach. The acquired gas phase heats of formation Δf H°(298,g) were correlated with the molecular surface electrostatic potentials VS,max, VS,min, and VS(ring), which were calculated by the B3LYP/6-31G(d,p)//B3PW91/cc-pVTZ method. It is shown that the VS(ring) electrostatic potential describes very precisely the structures of high-nitrogen N-heteroaromatics, with both consecutive and isolated nitrogen atoms, and their thermodynamic properties.
Rocznik
Strony
103--112
Opis fizyczny
Bibliogr. 20 poz., rs., tab., wykr.
Twórcy
  • Brno University of Technology, Brno, Czech Republic
autor
Bibliografia
  • [1] Murray J.S., Politzer P., The Electrostatic Potential: an Overview, WIREs Comput. Mol. Sci., 2011, 1, 153-163.
  • [2] Bulat F.A., Toro-Labbé A., Brinck T., Murray J.S., Politzer P., Quantitative Analysis of Molecular Surfaces: Areas, Volumes, Electrostatic Potentials and Average Local Ionization Energies, J. Mol. Model., 2010, 16, 1679-1691.
  • [3] Politzer P., Murray J.S., Molecular Electrostatic Potentials in the Computational Characterization of Energetic Compounds, New Trends Res. Energ. Mater., Proc. Semin., 9th, Pardubice, Czech Republic, 2006, 65-74.
  • [4] Singh R.P., Gao H., Meshri D.T., Shreeve J.M., Nitrogen-Rich Heterocycles, in: High Energy Density Materials, (Klapötke T.M., Ed.), Struct. Bond., 2007, vol. 125, pp. 35-83.
  • [5] Klapötke T.M., New Nitrogen-Rich High Explosives, in: High Energy Density Materials, (Klapötke T.M., Ed.), Struct. Bond., 2007, vol. 125, pp. 85-121.
  • [6] Steinhauser G., Klapötke T.M., “Green” Pyrotechnics: A Chemist’s Challenge. Angew. Chem. Int. Ed., 2008, 47, 3330-3347.
  • [7] SPARTAN’10 WinP 64 bit, Wavefunction, Irvine 2010.
  • [8] Politzer P., Lane P., Concha M.C.: Computational Approaches to Heats of Formation, in: Energetic Materials, Part I. Decomposition, Crystal and Molecular Properties (Politzer P., Murray J. S., Eds.), Theor. Comput. Chem. 2003, 12, 247-277.
  • [9] Hehre W.J., A Guide to Molecular Mechanics and Quantum Chemical Calculations, Wavefunction, Irvine, 2003.
  • [10] NIST Standard Reference Database, Number 69, 2008, NIST Chemistry Web Book <http://webbook.nist.gov/chemistry/ >.
  • [11] Bader F.W.R., Carroll M.T., Cheesman J.R., Chang C., Properties of Atoms in Molecules: Atomic Volumes, J. Am. Chem. Soc., 1987, 109, 7968-7979.
  • [12] Murray J.S., Lane P., Politzer P., Relationships between Impact Sensitivities and Molecular Surface Electrostatic Potentials of Nitroaromatic and Nitroheterocyclic Molecules, Mol. Phys., 1995, 85, 1-8.
  • [13] Pexa M., Friedl Z. : Relationship between Bond Disproportionation Energy and Molecular Surface Electrostatic Potential, New Trends Res. Energ. Mater., Proc. Semin., 14th, Pardubice, Czech Republic, 2011, 893-899.
  • [14] Pexa M., Friedl Z., Relationships between Reactivity and Molecular Electrostatic Potential of Nitroaromatic Energetic Materials, Chem. Listy, 2011, 105, 944.
  • [15] da Silva G., Moore E.E., Bozzelli J.W., Quantum Chemical Study of the Structure and Thermochemistry of the Five-membered Nitrogen-containing Heterocycles and Their Anions and Radicals, J. Phys. Chem. A, 2006, 110, 13979-13988.
  • [16] Williams C.I., Whitehead M.A., Aromatic Nitrogen Heterocyclic Heats of Formation: a Comparison of Semiempirical and ab initio Treatments. J. Mol. Struct. THEOCHEM, 1997, 393, 9-24.
  • [17] Matulis V.E., Ivashkevich O.A., Gaponik P.N., Elkind P.D., Sukhanov G.T., Bazyleva A.B., Zaitsau D.H., Theoretical Study of Gas-phase Formation Enthalpies and Isomerism for 4(5)-nitro-1,2,3-triazole and Its N-Alkyl Derivatives and Experimental Determination of Formation Enthalpy for 2-Methyl-4-nitro-1,2,3-triazole, J. Mol. Struct. THEOCHEM, 2008, 854, 18-25.
  • [18] Abou-Rachid H., Song Y., Hu A., Dudiy S., Zybin S.V., Goddard III W.A., Predicting Solid-State Heats of Formation of Newly Synthesized Polynitrogen Materials by using Quantum Mechanical Calculations, J. Phys. Chem. A, 2008, 112, 11914-11920.
  • [19] Murray J.S., Seminario J.M., Politzer P., A Computational Study of the Structures and Electrostatic Potentials of some Azines and Nitroazines, J. Mol. Struct. THEOCHEM, 1989, 187, 95-108.
  • [20] Soscun H.J., Aray Y., Murgich J., Hinchliffe A., Ab initio Study of the Molecular Electrostatic Potential of Monocyclic and Bicyclic Azines, J. Mol. Struct. THEOCHEM, 1994, 307, 1-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e48074ee-62d4-4284-9e6c-d0737cd036fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.