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Abstract
The paper presents the application of an indirect variant of the boundary element method
(BEM) to solve the two-dimensional steady flow of a Stokes liquid. In the BEM, a system
of differential equations is transformed into integral equations. This makes it possible to limit
discretization to the border of the solution. Numerical discretization of the computational do-
main was performed with linear boundary elements, for which a constant value of unknown
functions was assumed. The verification was carried out for the case of flow in a square cavity
with one moving wall. The results obtained show that the use of approximations by simple
linear functions is relatively easy for different shapes of the area, but the result may be affected
by significant errors.
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1. Introduction

Mathematical modeling of liquid flow is a part of computational fluid dynam-
ics. Mathematical equations representing the fundamental laws of physics (e.g. the
Navier-Stokes (NS) equations) have been well known for years. However, their so-
lution is practically impossible for the scale of any real-life case. So, for numerical
simulation,simplified models are usually solved. Simplifications can apply both to the
properties of liquids and to some of the impacts on their body.In many cases, we can
consider a Newtonian fluid with a constant density and viscosity, and the forces of
inertia can be neglected during its motion.

The equations describing the motion of the liquid are a mathematical expression
of the laws of conservation of mass and momentum, supplemented by the constitutive
equation defining the relationship between the tangential stress and viscosity, known
as Newton’s hypothesis. In the general case we can write them in the following vector
form:
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ρ ·
∂~u
∂t

+ ρ · ~u ·
(
∇~u

)
= −∇p + µ · ∆~u, (1)

∇ · ~u = 0, (2)

where:

ρ – density of the fluid,
t – time variable,
~u – velocity vector, ~u = [ux, uy, uz],
p – pressure,
µ – dynamic viscosity coefficient (µ = const),
∇ – differential operator nabla,

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k, (3)

∆ – Laplace differential operator,

∆ =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 , (4)

i, j, k – unit vectors of the coordinate system of spatial axes x, y, z.

In order to convert the equations to dimensionless forms, we define the characteris-
tic velocity Uc and the characteristic length Lc (Marin 2012). Then we can define
dimensionless variables (* – indicates a dimensionless variable):

x∗ =
x
Lc
, u∗ =

u
Uc
, t∗ = t

Uc

Lc
, p∗ =

pLc

µUc
. (5)

Taking into account equation (5) and multiplying both sides of equation (1) by L2
c /Ucµ,

we obtain:
ρUcL2

c
µLc

∂~u∗

∂t∗
+
ρUcLc

µ
~u∗ · (∇~u∗) = −∇p∗ + ∆~u∗, (6)

∇ · ~u∗ = 0. (7)

Then, assuming the time scale Tc = Lc/Uc and using formula ν = µ/ρ, we can define
dimensionless numbers:

β =
L2

c
νTc

, Re =
UcLc

ν
, (8)

where:

Re – Reynolds number,
β – Stokes number.
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Taking into account Eq. (8), we obtain the dimensionless form of the equation of
conservation of momentum:

β
∂~u∗

∂t∗
+ Re ~u∗ ·

(
∇~u∗

)
= −∇p∗ + ∆~u∗. (9)

If Re � 1 and β � 1, then we can skip the terms on the left side, and the NS equation
(9) simplifies to the so-called linear Stokes equation, which, after conversion to the
dimensional equations, can be written as follows:

∇p − µ∆~u = 0, (10)

∇ · ~u = 0. (11)

The resulting vector of equations (10) and (11) may be used for description of two-
and three-dimensional problems. In this paper,only a two-dimensional case will be
discussed.

2. The Basic Equation of BEM

In general, the system of equations (10) and (11) has no analytical solution, and
these equations are solved by numerical methods. For purposes of this paper, the
solution was obtained by the BEM. This method requires the transformation of dif-
ferential equations into their integral forms. The main advantage of the BEM is
the fact that only the border of the domain is subject to discretization. In the case
of a two-dimensional domain, discretization applies to a one-dimensional boundary
area.

The starting point for the derivation of boundary integral equations is the Lorentz
principle of reciprocal identity (Pozrikidis 1992). According to this principle, for two
arbitrary no-singular flows u and u′ with the associated stress tensors σ and σ′:

∂

∂xk

(
u′iσik − uiσ

′
ik

)
= 0. (12)

Defining u′ as a flow induced by a point force with intensity g located at the point x0,
we can write:

u′i =
1

4πµ
Gi j(x, x0)g j , (13)

σ′ik(x) =
1

4π
Ti jk(x, x0)g j , (14)

where:

Gi j – two-dimensional Stokeslet (G – tensor),
Ti jk – tensor of stress fields, associated with G;
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their exact form will be described below.
Substituting expressions (13) and (14) into the above formula (12) and rejecting

the constant g, we obtain:

∂

∂xk

(
Gi j(x, x0) · σik − µui · Ti jk(x, x0)

)
= 0. (15)

Applying the Gauss-Ostrogradsky theorem and introducing a surface force

~φ = σ · ~n, (16)

where: ~n – vector normal to the boundary of domain fluid flow,
we obtain the integral equation:∮

Γ
φi(x) ·Gi j(x, x0)dΓ −

∮
Γ
µui · Ti jk(x, x0) · nk(x)dΓ = 0, (17)

where: Γ – boundary of domain fluid flow.
Taking into account the singularity Ti jk(x, x0) · nk(x) (Pozrikidis 1992), for the

interior domain of integration, we obtain:

u j(x0) = −
1

4πµ

∮
Γ
φi(x) ·Gi j(x, x0)dΓ +

1
4π

∮
Γ

ui · Ti jk(x, x0) · nk(x)dΓ. (18)

For the case when x0 ∈ Γ

u j(x0) = −
1

2πµ

∮
Γ
φi(x) ·Gi j(x, x0)dΓ +

1
2π

∮
Γ

ui · Ti jk(x, x0) · nk(x)dΓ. (19)

Fig. 1. Example of multi-contiguous domains Γ =

5⋃
n=1

Γn
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Because the desired velocity is expressed by a contour integral, the expressions
obtained can be easily used for multi-contiguous domains (Fig. 1):

u j(x0) =

= −
1

4πµ

N∑
n=1

[∮
Γn

φi(x) ·Gi j(x, x0)dΓn − µ

∮
Γn

ui · Ti jk(x, x0) · nk(x)dΓn

]
,

(20)

and for the case when x0 ∈ Γ:

u j(x0) =

= −
1

2πµ

N∑
n=1

[∮
Γn

φi(x) ·Gi j(x, x0)dΓn − µ

∮
Γn

ui · Ti jk(x, x0) · nk(x)dΓn

]
.

(21)

Next, we can find Green’s functions for the velocity, pressure, and stress tensor
(Pozrikidis 1992), which represent a solution of the continuity equation (2) and sin-
gular Stokes equation at the point x0:

−∇p + µ∆~u + gδ(x − x0) = 0, (22)

where: δ(x − x0) – Dirac delta function.
If we move the delta function to the right side of equation (22) and define it as:

δ (x̂) =
1

2π
∇2 ln r, (23)

where: r = |x̂| , x̂ = x − x0,
remembering that the pressure is a harmonic function and balancing the pressure gra-
dient and the dimension of the delta function, we obtain:

P =
1

2π
(∇ ln r) g. (24)

Substituting (24) and (23) into (22), we obtain:

µ∇2u =
1

2π
g
(
∇∇ − I∇2

)
(ln r), (25)

where: I – identity matrix.
The expression for the velocity in terms of the scalar function H will be as follows:

u =
1
µ
g
(
∇∇ − I∇2

)
H. (26)

It should be noted that the continuity equation (2) is satisfied for any H . Substituting
(26) into (25), we obtain: (

∇∇ − I∇2
) (
∇2H −

ln r
2π

)
= 0. (27)
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Equation (27) is satisfied for any solution of the Poisson equation:

∇2H =
ln r
2π

. (28)

Taking into account the expression for the delta function (23), we obtain that H is
Green’s function for the biharmonic equation:

∇4H = δ(x − x0). (29)

Finally, we obtain:
H =

1
8π

r2(ln r − 1), (30)

Gi j = −δi j ln r +
x̂i x̂ j

r2 , (31)

Pi = 2
x̂i

r2 , (32)

where: P – pressure, associated with G .
Associated with (31) and (32), the stress tensor takes the following form:

Ti jk(x, x0) = −δikP j(x, x0) +
∂Gi j

∂xk
(x, x0) +

∂Gi j

∂xi
(x, x0). (33)

Substituting Gi j (31) and pi (32), we obtain:

Ti jk(x, x0) = −4
x̂i x̂ j x̂k

r2 . (34)

3. Numerical Approximation of BEM Eequations

Assume, that the discretization of a border area consisting of N segments, we ob-
tain boundary elements (in the 2D approach, they are sections). Along each section,
the normal and tangential liquid velocity ~u = (u1, u2) or surface forces ~φ = (φ1, φ2)
must be given. At the same time, every point of the boundary must have two scalar
values in the following variants: (u1, u2), (φ1, φ2), (u1, φ1),(u1, φ2), (u2, φ1), (u2, φ2). In
this paper, a case will be considered where only the velocity vector ~u = (u1, u2) on
the border of the solutions is given, and surface forces are unknown. It is also very
important that the shape of the function φ j(x) is known for each boundary element
and is assumed to have a constant value φ j(x) = const (the simplest case).

Finally, after discretization, we obtain a new form of integral equations (19):

u j
(
xp

0

)
=

= −
1

2πµ

N∑
q=1

~φ
(
ξ

q
0

) daq∫
−daq

Gi j (x, ξ(ξx, 0)) dξx

∣∣∣∣∣∣∣∣∣
x=xp

0

·
~u j

(
xp

0

)∣∣∣∣~u j
(
xp

0

)∣∣∣∣
 +

1
2π

I j

(
xp

0

)
,

(35)
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I j

(
xp

0

)
=

N∑
q=1

~u
(
ξ

q
0

) daq∫
−daq

Ti jk (x, ξ(ξx, 0)) · (0, 1)dξx

∣∣∣∣∣∣∣∣∣
x=xp

0

·
~u j

(
xp

0

)∣∣∣∣~u j
(
xp

0

)∣∣∣∣
 , (36)

where:
i = 1, 2, j = 1, 2, p = 1, 2, ...,N.

In equation (35) the integrals of the vectors G1 j and G2 j are equal:

~Fτ(x, daq) =

daq∫
−daq

G1 j(x, ξ(ξx, 0))dξx, (37)

~Fn(x, daq) =

daq∫
−daq

G2 j(x, ξ(ξx, 0))dξx, (38)

and for the stress tensor:

T ∗i j(x, daq) =

daq∫
−daq

Ti jk(x, ξ(ξx, 0)) · (0, 1)dξx. (39)

The solution of these integrals can be obtained analytically, and we can write:

uτ
(
xp

0

)
= −

1
2πµ

N∑
q=1

[[
φ1

(
ξ

q
0

)
· ~Fτ

(
xp

0 , daq
)
+

+ φ2
(
ξ

q
0

)
· ~Fn

(
xp

0 , daq
)]
· ~τp

]
+

1
2π

IΓ
j

(
xp

0

)
τ
,

(40)

un
(
xp

0

)
= −

1
2πµ

N∑
q=1

[[
φ1

(
ξ

q
0

)
· ~Fτ

(
xp

0 , daq
)
+

+ φ2
(
ξ

q
0

)
· ~Fn

(
xp

0 , daq
)]
· ~np

]
+

1
2π

IΓ
j

(
xp

0

)
n
,

(41)

I j(x
p
0 )τ =

N∑
q=1

[
~u
(
ξ

q
0

)
· T ∗i j

(
xp

0 , daq
)
· ~τp

]
, (42)

I j(x
p
0 )n =

N∑
q=1

[
~u
(
ξ

q
0

)
· T ∗i j

(
xp

0 , daq
)
· ~np

]
, (43)

where: xp
0 , ξ

p
0 – midpoints of elements with indices p, q.
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Taking into account that p = 1, 2, ...,N , we obtain 2N linear equations relative to un-
known φk

j , j = 1, 2, k = 1, 2, ...,N . The matrix of the resulting system of linear equa-
tions is absolutely full, and its solution has been carried out with the library cuda,
which implements the parallel algorithm LU-factorization for solving a system of
linear equations.

After solving the system of equations (40) and (41), when the force vector ~φ is
already known for each boundary element, we can calculate the velocity inside the
area at any point x0, using:

~u(x0) = −
1

4πµ

N∑
q=1

[
φ1

(
ξ

q
0

)
· ~Fτ

(
x0, daq

)
+ φ2

(
ξ

q
0

)
· ~Fn

(
x0, daq

)]
+

1
4π

I j(x0), (44)

I (x0) =

N∑
q=1

~u
(
ξ

q
0

)
· T ∗i j

(
x0, daq

)
. (45)

4. Numerical Calculations and Discussion of Results

In order to verify the adopted computational models, the case of flow in a square cavity
with one moving wall was considered (Teleszewski and Sorko 2011). This case has
been widely presented in the literature devoted to discrete methods of determining the
Stokes flow and is a generally accepted formulation of the test tasks for these methods.

Fig. 2 presents an example of domain discretization with twelve boundary ele-
ments. Fig. 3 shows the distribution of streamlines obtained with a) 48, b) 280, c)
800, and d) 4000 boundary elements.

Fig. 2. Example of domain discretization with 12 boundary elements and boundary conditions
relative to the velocity



Application of the Boundary Element Method for the Simulation of Two-dimensional . . . 171

Fig. 3. Distribution of streamlines obtained with a) 48, b) 280, c) 800, and d) 4000 boundary
elements

Analyzing qualitatively the results presented in Fig. 3, we can see differences in
the solutions obtained. They are due to the following two conditions. Firstly, they arise
from the fact that boundary conditions are satisfied only in the centers of boundary
elements. In all other points of the border, for the method of domain discretization,
the boundary conditions may not be met. Secondly, the contour integrals in the ex-
pressions of velocity (18) and (18) and (19) (Katsikadelis 2002). Also, to increase the
accuracy of the solution during numerical approximation, nonlinear functions may
be used (often polynomials), describing the velocity and surface forces fora boundary
element. Then, of course, the analytical calculation of integrals (37) and (38) is com-
plex or impossible. For the calculation of integrals (37) and (38), numerical methods
can also be used. However, in this case, the calculation time and demand for space in
the computer’s memory increase.
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Fig. 4 and 5 show the graphs of the velocity components vx, vy in sectional views
(for x = 0.5, y = 0.5) calculated by the BEM for 4000 elements (dotted line) and by
the finite element method (FEM) (solid line). In this case, the solution obtained by
the FEM is treated as similar to the exact solution.

Fig. 4. Velocity component vx in section x = 0.5 (FEM – solid line, BEM – dotted line)

Fig. 5. Velocity component vy in section x = 0.5 (FEM – solid line, BEM – dotted line)

Comparing the solutions obtained by the FEM and BEM (Fig. 4 and 5), we can
see that the error of the BEM is relatively high because of the method adopted for the
numerical approximation of integral equations. In contrast, Teleszewski and Sorko
(2011) show the results of a solution obtained for a similar case, in which the error of
the BEM does not exceed 1% for 400 boundary elements and 0.5% for 800 elements.
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5. Summary and Conclusions

This paper presents the application of an indirect variant of the boundary element
method to solve the two-dimensional steady flow of a Stokes liquid. The numerical
simulations of flow in a square cavity with one moving wall were analyzed. The anal-
ysis was based on a numerical solution obtained by the finite element method and the
boundary element method.

In conclusion, it should be pointed out that the application of the boundary ele-
ment method for solving the steady flow of a Stokes liquid is forward-looking. Con-
version of differential equations to integral equations makes it possible to reduce the
dimensions of the domain subject to discretization, which leads to an easier process
of digitization and a smaller number of discrete components. The ease of using the
BEM for multi-coherent areas with non-trivial geometry makes this method more
forward-looking than popular methods, such as the finite element method or the finite
difference method. The advantages of the BEM may also include its application to
solving the problems of three-dimensional flows of a Stokes liquid. However, when
applying the BEM, particular attention should be paid to the method used for the nu-
merical approximation of basic equations. The choice of the approximation method
has an impact on such things as the choice of the solution algorithm, the accuracy of
the solution, the number of elements used during discretization, computation time,
and the required amount of computer memory needed to perform calculations.
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