Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article aims to prove the existence of a solution and compute the region of existence for a class of four-point nonlinear boundary value problems (NLBVPs) defined as [formula] where I = [0, 1], 0 < ξ≥ η < 1 and λ 1 ,λ > 0. The nonlinear source term [formula] is one sided Lipschitz in u’ with Lipschitz constant L 1 and Lipschitz in u', such that [formula]. We develop monotone iterative technique (MI-technique) in both well ordered and reverse ordered cases. We prove maximum, anti-maximum principle under certain assumptions and use it to show the monotonic behaviour of the sequences of upper-lower solutions. The sufficient conditions are derived for the existence of solution and verified for two examples. The above NLBVPs is linearised using Newton’s quasilinearization method which involves a parameter k equivalent to max [formula]. We compute the range of k for which iterative sequences are convergent.
Czasopismo
Rocznik
Tom
Strony
571--600
Opis fizyczny
Bibliogr. 54 poz.
Twórcy
autor
- IIT Patna Department of Mathematics Bihta, Patna 801103, (BR) India
autor
- IIT Patna Department of Mathematics Bihta, Patna 801103, (BR) India
autor
- Texas A&M, University-Kingsville Department of Mathematics 700 University Blvd., MSC 172, Kingsville, TX 78363-8202, USA
Bibliografia
- [1] D. Anderson, Multiple positive solutions for a three-point boundary value problem, Math. Comput. Modelling 27 (1998), 49-57.
- [2] Z. Bai, Z. Du, Positive solutions for some second-order four-point boundary value problems, J. Math. Anal. Appl. 330 (2007), 34-50.
- [3] Z. Bai, H. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005), 495-505.
- [4] E.I. Bravyi, Solvability of boundary value problems for linear functional differential equations, Regular and Chaotic Dynamic, Moscow-Izhevsk, 2011.
- [5] A. Cabada, P. Habets, S. Lois, Monotone method for the Neumann problem with lower and upper solutions in the reverse order, Appl. Math. Comput. 117 (2001), 1-14.
- [6] S.A. Chaplygin, Foundations of new method of approximate integration of differential equations, Moscow, 1919 (Collected works 1, GosTechIzdat, 1948), 348-368.
- [7] P. Chen, Y. Li, X. Zhang, Double perturbations for impulsive differential equations in Banach spaces, Taiwanese J. Math. 20 (2016), 1065-1077.
- [8] S. Chen, W. Ni, C. Wang, Positive solution of fourth order ordinary differential equation with four-point boundary conditions, Appl. Math. Lett. 19 (2006), 161-168.
- [9] M. Cherpion, C.D. Coster, P. Habets, A constructive monotone iterative method for second-order BVP in the presence of lower and upper solutions, Appl. Math. Comput. 123 (2001), 75-91.
- [10] A. Chinni, B.D. Bella, P. Jebelean, R. Precup, A four-point boundary value problem with singular f-Laplacian, J. Fixed Point Theory Appl. 21 (2019), 1-16.
- [11] C.D. Coster, P. Habets, Two-Point Boundary Value Problems: Lower and Upper Solutions, Elsevier Science, 2006.
- [12] Y. Cui, Q. Sun, X. Su, Monotone iterative technique for nonlinear boundary value problems of fractional order p e (2, 3], Adv. Difference Equ. 2017 (2017), Paper no. 248, 12 pp.
- [13] A. Domoshnitsky, Iu. Mizgireva, Sign-constancy of Green’s functions for impulsive nonlocal boundary value problems, Bound. Value Probl. 175 (2019), 1-14.
- [14] G.S. Dragoni, The boundary value problem studied in large for second order differential equations, Math. Ann. 105 (1931), 133-143.
- [15] L. Ge, Existence of solution for four-point boundary value problems of second-order impulsive differential equations (I), World Academy of Science, Engineering and Technology, Inter. J. Comp. Math. 4 (2010), 820-825.
- [16] W. Ge, Z. Zhao, Multiplicity of solutions to a four-point boundary value problem of a differential system via variational approach, Bound. Value Probl. 2016 (2016), Article no. 69.
- [17] F. Geng, M. Cui, Multi-point boundary value problem for optimal bridge design, Int. J. Comput. Math. 87 (2010), 1051-1056.
- [18] P. Guidotti, S. Merino, H. Amann, Gradual loss of positivity and hidden invariant cones in a scalar heat equation, Differential Integral Equations 13 (2000), 1551-1568.
- [19] Z. He, X. He, Monotone iterative technique for impulsive integro-differential equations with periodic boundary conditions, Comput. Math. Appl. 48 (2004), 73-84.
- [20] G. Infante, J.R.L. Webb, Loss of positivity in a nonlinear scalar heat equation, NoDEA Nonlinear Differential Equations Appl. 13 (2006), 249-261.
- [21] R.A. Khan, J.R.L. Webb, Existence of at least three solutions of a second-order three-point boundary value problem, Nonlinear Anal. 64 (2006), 1356-1366.
- [22] R.A. Khan, J.R.L. Webb, Existence of at least three solutions of nonlinear three point boundary value problems with super-quadratic growth, J. Math. Anal. Appl. 328 (2007), 690-698.
- [23] G.S. Ladde, V. Lakshmikantham, A.S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman Publishing Company, Boston, London, Melbourne, 1985.
- [24] F. Li, M. Jia, X. Liu, C. Li, G. Li, Existence and uniqueness of solutions of second-order three-point boundary value problems with upper and lower solutions in the reversed order, Nonlinear Anal. 68 (2008), 2381-2388.
- [25] B. Liu, Positive solutions of a nonlinear four-point boundary value problems in Banach spaces, J. Math. Anal. Appl. 305 (2005), 253-276.
- [26] R. Ma, Existence results of a m-point boundary value problem at resonance, J. Math. Anal. Appl. 294 (2004), 147-157.
- [27] P.K. Palamides, A.P. Palamides, Fourth-order four-point boundary value problem: a solutions funnel approach, International Journal of Mathematics and Mathematical Sciences 2012 (2012), Article ID 375634.
- [28] R.K. Pandey, A.K. Verma, Existence-uniqueness results for a class of singular boundary value problems arising in physiology, Nonlinear Anal. Real World Appl. 9 (2008), 40-52.
- [29] R.K. Pandey, A.K. Verma, Existence-uniqueness results for a class of singular boundary value problems - II, J. Math. Anal. Appl. 338 (2008), 1387-1396.
- [30] R.K. Pandey, A.K. Verma, A note on existence-uniqueness results for a class of doubly singular boundary value problems, Nonlinear Anal. 71 (2009), 3477-3487.
- [31] R.K. Pandey, A.K. Verma, Monotone method for singular BVP in the presence of upper and lower solutions, Appl. Math. Comput. 215 (2010), 3860-3867.
- [32] R.K. Pandey, A.K. Verma, On solvability of derivative dependent doubly singular boundary value problems, J. Appl. Math. Comput. 33 (2010), 489-511.
- [33] E. Picard, Mémoire sur la théorie des équations aux dérivées partiel les et la méthode des approximations successives, J. Math. Pures Appl. 6 (1890), 145-210.
- [34] J.D. Ramirez, A.S. Vatsala, Monotone iterative technique for fractional differential equations with periodic boundary conditions, Opuscula Math. 29 (2009), 289-304.
- [35] C. Shen, L. Yang, Y. Liang, Positive solutions for second order four-point boundary value problems at resonance, Topol. Methods Nonlinear Anal. 38 (2011), 1-15.
- [36] M. Singh, A.K. Verma, On a monotone iterative method for a class of three point nonlinear nonsingular BVPs with upper and lower solutions in reverse order, Journal of Applied Mathematics and Computing 43 (2013), 99-114.
- [37] M. Singh, A.K. Verma, Picard type iterative scheme with initial iterates in reverse order for a class of nonlinear three point BVPs, International Journal of Differential Equations 2013 (2013), Article ID 728149.
- [38] M. Singh, A.K. Verma, Nonlinear three point singular BVPs: A classification, Communications in Applied Analysis 21 (2017), 513-532.
- [39] B. Sun, Positive symmetric solutions to a class of four-point boundary value problems, [in:] 2011 International Conference on Multimedia Technology, IEEE, 2011, 2297-2300.
- [40] B. Sun, Monotone iterative technique and positive solutions to a third-order differential equation with advanced arguments and Stieltjes integral boundary conditions, Adv. Difference Equ. 2018 (2018), Article no. 218.
- [41] S.D. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Anal. 3 (1979), 897-904.
- [42] X. Tang, Existence of solutions of four-point boundary value problems for fractional differential equations at resonance, J. Appl. Math. Comput. 51 (2016), 145-160.
- [43] N. Urus, A.K. Verma, M. Singh, Some new existence results for a class of four point nonlinear boundary value problems, Sri JNPG College Revelation 3 (2019), 7-13.
- [44] A.K. Verma, M. Singh, A note on existence results for a class of three-point nonlinear BVPs, Math. Model. Anal. 20 (2015), 457-470.
- [45] A.K. Verma, N. Urus, M. Singh, Monotone iterative technique for a class of four point BVPs with reversed ordered upper and lower solutions, Int. J. Comput. Methods 17 (2020), 1950066.
- [46] G. Wang, Monotone iterative technique for boundary value problems of a nonlinear fractional differential equation with deviating arguments, J. Comput. Appl. Math. 236 (2012), 2425-2430.
- [47] W. Wang, Monotone iterative technique for causal differential equations with upper and lower solutions in the reversed order, Bound. Value Prob. 2016 (2016), Article no. 140.
- [48] J.R.L. Webb, Existence of positive solutions for a thermostat model, Nonlinear Anal. 13 (2012), 923-938.
- [49] M. Wei, Q. Li, Monotone iterative technique for a class of slanted cantilever beam equations, Math. Probl. Eng. 2017 (2017), Article ID 5707623.
- [50] L. Yang, C. Shen, Y. Liang, Existence, multiplicity of positive solutions for four-point boundary value problem with dependence on the first order derivative, Fixed Point Theory 11 (2010), 147-159.
- [51] C. Zhai, L. Xu, Properties of positive solutions to a class of four-point boundary value problem of caputo fractional differential equations with a parameter, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 2820-2827.
- [52] Q. Zhang, S. Chen, J. Lu, Upper and lower solution method for fourth-order four-point boundary value problems, J. Comput. Appl. Math. 196 (2006), 387-393.
- [53] Y. Zhang, Positive solutions of singular sublinear Dirichlet boundary value problems, SIAM J. Math. Anal. 26 (1995), 329-339.
- [54] Y. Zou, Q. Hu, R. Zhang, On numerical studies of multi-point boundary value problem and its fold bifurcation, Appl. Math. Comput. 185 (2007), 527-537.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e477a7c0-d5f1-46c3-b8b8-333f01b359bd