PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ride-hailing service users and providers in the higher education area: a spatial and non-spatial perspective

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article describes supply and demand through the spatial and non-spatial dimensions of the users and providers of ride-hailing services in the higher education area. The structural equation modeling method determines the relationship between variables based on a perception survey of 200 users and 200 ride-hailing service providers in the Tembalang higher education area, Semarang, conducted from 2020-2021. The modeling results show that there is an insignificant spatial and non-spatial relationship. The non- spatial dimension in both users and ride-hailing providers influences the moderating of both spatial dimensions. The development of higher education institutions in peri-urban areas creates new growth poles in line with the evolution of digital platforms that dictate physical geographies due to the fusion of non-spatial conditions. Reconciling the public transportation system with campus-based operational adjustments, appropriate fares, and fees will provide more equal opportunities for campus residents to engage and succeed in higher education.
Czasopismo
Rocznik
Strony
153--165
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
  • Department of Urban and Regional Planning, Diponegoro University; Prof. Soedarto, SH Street, Semarang, Indonesia
  • Department of Urban and Regional Planning, Diponegoro University; Prof. Soedarto, SH Street, Semarang, Indonesia
  • Department of Urban and Regional Planning, Diponegoro University; Prof. Soedarto, SH Street, Semarang, Indonesia
Bibliografia
  • 1. Rizky, A & Muttaqien, P. & Basuki, Y. Trip rate model of attraction in higher education zone. Journal of Advanced Civil and Environmental Engineering. 2020. Vol. 3. P. 1-8.
  • 2. Lopez-Garcia, P. & Onieva, E. & Osaba, E. & Masegosa, A.D. & Perallos, A. A hybrid method for short-term traffic congestion forecasting using genetic algorithms and cross entropy. IEEE Transactions on Intelligent Transportation Systems. 2016. Vol. 17. P. 557-569.
  • 3. Allen, J. & Farber, S. How time-use and transportation barriers limit on-campus participation of university students. Travel Behav Soc. 2018. Vol. 13. P. 174-182.
  • 4. Kitamura, R. Life-style and travel demand. Transportation (Amst). 2009. Vol. 36. P. 679-710.
  • 5. Nugroho, S.B. & Zusman, E. & Nakano, R. Explaining the spread of online taxi services in Semarang, Bogor and Bandung, Indonesia; a discrete choice analysis. Travel Behav Soc. 2020. Vol. 20. P. 358-369.
  • 6. Sunitiyoso, Y. & Rahayu, W.A. & Nuraeni, S. & Nurdayat, I.F. & Pambudi, N.F. & Hadiansyah, F. Role of ride-hailing in multimodal commuting. Case Stud Transp Policy. 2022. Vol. 10. P. 1283-1298.
  • 7. Subriadi, A.P. & Baturohmah, H. Social media in marketing of ride-hailing: A systematic literature review. Procedia Comput Sci. 2022. Vol. 197. P. 102-109.
  • 8. Septiani, R. & Handayani, P.W. & Azzahro, F. Factors affecting behavioral intention in online transportation service: case study of GO-JEK. Procedia Comput Sci. 2017. Vol. 124. P. 504-512.
  • 9. Belgiawan, P.F. & Joewono, T.B. & Irawan, M.Z. Determinant factors of ride-sourcing usage: A case study of ride-sourcing in Bandung, Indonesia. Case Stud Transp Policy. 2022. Vol. 10. P. 831-840.
  • 10. Silalahi, S.L.B. & Handayani, P.W. & Munajat, Q. Service quality analysis for online transportation services: case study of GO-JEK. Procedia Comput Sci. 2017. Vol. 124. P. 487-495.
  • 11. Raj, P. & Bhaduri, E. & Moeckel, R. & Goswami, A.K. Analyzing user behavior in selection of ride- hailing services for urban travel in developing countries. Transportation in Developing Economies. 2023. Vol. 9. No. 1. DOI: 10.1007/s40890-022-00172-5.
  • 12. Chalermpong, S. & Kato, H. & Thaithatkul, P. & Ratanawaraha, A. & Fillone, A. & Hoang-Tung, N. & Jittrapirom, P. Ride-hailing applications in Southeast Asia: A literature review. Int J Sustain Transp. 2023. Vol. 17. P. 298-318.
  • 13. Henao, A. & Marshall, W.E. An analysis of the individual economics of ride-hailing drivers. Transp Res. Part A Policy Pract. 2019. Vol. 130. P. 440-451.
  • 14. Nasution, A.A. & Erwin, K. & Bartuska, L. Determinant study of conventional transportation and online transportation. Transportation Research Procedia. 2020. Vol. 44. P. 276-282.
  • 15. Md Nor, M.N. & Md Sabri, S. & Mat Isa, N.F. E-hailing service satisfaction: a case study of students in a higher education institution in Perlis, Malaysia. Jurnal Intelek. 2021. Vol. 16. P. 138-150.
  • 16. Ash, J. & Kitchin, R. & Leszczynski, A. Digital turn, digital geographies? Prog Hum Geogr. 2018. Vol. 42. P. 25-43.
  • 17. Cattaruzza, A. Geopolitics of digital data. Le Cavalier Bleu Editions. 2019. ISBN: 9791031803487. DOI: 10.3917/lcb.catta.2019.01.
  • 18. Qiao, S. & Huang, G. & Yeh, AGO. Who are the gig workers? Evidence from mapping the residential locations of ride-hailing drivers by a big data approach. Cities. 2023. Vol. 132. No. 104112. DOI: 10.1016/j.cities.2022.104112.
  • 19. Org, E. UC Davis Research Reports Title Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States Publication Date. 2017.
  • 20. Thaithatkul, P. & Anuchitchanchai, O. & Srisurin, P. & Sanghatawatana, P. Chalermpong, S. Ridehailing applications in Bangkok: determining service quality, passenger satisfaction, and loyalty. International Journal of Technology. 2021. Vol. 12. P. 903-913.
  • 21. Bhaduri, E. & Goswami, A.K. Examining user attitudes towards ride-hailing services - A SEM- MIMIC ordered probit approach. Travel Behav Soc. 2023. Vol. 30. P. 41-59.
  • 22. Venturini, S. & Mehmetoglu, M. Plssem: a Stata package for structural equation modeling with partial least squares. J Stat Softw. 2019. Vol. 88(8). P. 1-35. DOI: 10.18637/jss.v088.i08.
  • 23. Hair, J.F. & Risher, J.J. & Sarstedt, M. & Ringle, C.M. When to use and how to report the results of PLS-SEM. European Business Review. 2019. Vol. 31(1). P. 2-24.
  • 24. Fornell, C. & Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research. 1981. Vol. 18(1). P. 39-50.
  • 25. Cheung, G.W. & Lau, R.S. Testing mediation and suppression effects of latent variables: Bootstrapping with structural equation models. Organ Res Methods. 2008. Vol. 11. P. 296-325.
  • 26. Little, T.D. & Card, N.A. & Bovaird, J.A. & Preacher, K.J, & Crandall, C.S. Structural Equation Modeling of Mediation and Moderation With Contextual Factors. In: Little, T.D. & Bovaird, J.A. & Card, N.A. (Eds.). Modeling contextual effects in longitudinal studies. Lawrence Erlbaum Associates Publishers. 2007. P. 207-230.
  • 27. Olayode, I.O. & Severino, A. & Justice Alex, F. & Macioszek, E. & Tartibu, L.K. Systematic review on the evaluation of the effects of ride-hailing services on public road transportation. Transp Res Interdiscip Perspect. 2023. Vol. 22. No. 100943. DOI: 10.1016/j.trip.2023.100943.
  • 28. Göçer, Ö. & Göçer, K. The effects of transportation modes on campus use: A case study of a suburban campus. Case Stud Transp Policy. 2019. Vol. 7. P. 37-47.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4735496-c1c7-48f5-aa82-e5d9e89e682f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.