Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The object of this paper is to further investigate the notion of shape and topological derivatives in the light of the general notion of Hadamard semidifferential for a function defined on a subset of a topological vector space. The use of semitrajectories and the characterization of the ad- jacent tangent cone provide simple tools for defining Hadamard semi-differentials and differentials without a priori introduction of geometric structures such as, for instance, a differential manifold. Such a simple notion retains all the operations of the classical differential calculus, including the chain rule, for a large class of nondifferentiable functions, in particular, the norms and the convex functions. It also provides a direct access to functions defined on a lousy set or a manifold with boundary. This direct approach is first illustrated in the context of the classical matrix subgroups of the general linear group GL(n) of invertible n×n matrices, which are the prototypes of Lie groups. For the shape derivative we have groups of diffeomorphisms of the Euclidean space Rn with the composition operation, and the adjacent tangent cone is a linear space; for the topological derivative we have the group of characteristic functions with the symmetric difference operation and the adjacent tangent cone is only a cone at some points.
Czasopismo
Rocznik
Tom
Strony
43--75
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- Centre de recherches mathématiques and Département de mathématiques et de statistique, Université de Montréal, C.P. 6128, succ. Centre-ville, Montreal, Canada H3C 3J7
Bibliografia
- Absil, P.-A., Mahony, R., and Sepulchre, R. (2008) Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, N.J., Woodstock.
- Assouad, P. (1983) Plongements Lipschitziens dans Rn. Bull. Soc. Math. France 111, 429–448.
- Aubin, J.P. and Frankowska, H. (1990) Set-Valued Analysis. Birkhäuser, Boston.
- Baydin, A.G., Pearlmutter, B.A., Radul, A.A., and Siskind, J.M. (2018) Automatic differentiation in machine learning: A survey. Journal of Machine Learning Research, 18, 1–43.
- Bolte, J. and Pauwels, E. (2021) Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning. Mathematical Programming: Series A and B. 188 (1), 19–51.
- Delfour, M.C. (2016) Differentials and semidifferentials for metric spaces of shapes and geometries. In: System Modeling and Optimization, L. Bociu, J.-A. D´esid´eri and A. Habbal, eds., 230–239, Springer International Publishing AG, Switzerland.
- Delfour, M.C. (2018a) Topological derivative: a semidifferential via the Minkowski content. Journal of Convex Analysis 25 (3), 957–982.
- Delfour, M.C. (2018b) Control, shape, and topological derivatives via minimax differentiability of Lagrangians. In: Numerical Methods for Optimal Control Problems. M. Falcone, R. Ferretti, L. Grüne, W. McEneaney, eds., 137–164, Springer INdAM Series 29, Springer, Cham, Switzerland.
- Delfour, M.C. (2020a) Introduction to Optimization and Hadamard Semidifferential Calculus, 2nd ed. SIAM, Philadelphia, PA.
- Delfour, M.C. (2020b) Hadamard semidifferential of functions on an unstructured subset of a TVS. J. Pure Appl. Funct. Anal. 5 (5), 1039–1072.
- Delfour, M.C. (2023a) One-sided Derivative of Parametrized Minima for Shape and Topological Derivatives. SIAM J. Control. Optim. 61 (3), 1322–1349.
- Delfour, M.C. (2023b) Hadamard semidifferential of continuous convex functions. J. Pure and Applied Functional Analysis 8 (5), 1341–1356.
- Delfour, M.C. and Huot-Chantal, F. (2019) On the figure of columns of Lagrange revisited. J. Convex Anal. (3)26, 855–876.
- Delfour, M.C. and Zolésio, J.P. (2011) Shapes and Geometries: Metrics, Analysis, Differential Calculus and Optimization, 2nd ed. SIAM, Philadelphia, PA.
- Edelman, A., Arias, T.A. and Smith, S.T. (1998) The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 (2), 303–353.
- Evans, L.C. and Gariepy, R.F. (1992) Measure Theory and the Properties of Functions. CRC Press, Boca Raton, FL.
- Fréchet, M. (1937) Sur la notion de différentielle. Journal de Mathématiques Pures et Appliquées 16, 233–250.
- Gromov, M. (1991) Geometric Group Theory, volume 2: Asymptotic Invariants of Infinite Groups. London Mathematical Society Lecture Note Series, 182, Cambridge University Press.
- Horváth, J. (1966) Topological Vector Spaces and Distributions, Vol. I. Addison-Wesley, Reading, MA.
- Huot-Chantal, F. (2018) Sur la figure des colonnes de Lagrange revisité. Mémoire, Dép. de Mathématiques et de Statistique, Université deMontréal, Canada.
- Ji, M. and Klinowski, J. (2006) Taboo evolutionary programming: a new method of global optimization. Proc. R. Soc. A 462, 3613–3627.
- Lang, S. (1969) Analysis II. Addison–Wesley Publishing Company, Reading, Mass.
- Lange, K. (2024) A tutorial on Hadamard semidifferentials. Foundations and Trends in Optimization 6 (1), 1–62.
- Marsden, J.E. and Ratiu, T.S. (1994) Introduction to Mechanics and Symmetry. Springer-Verlag, New York, Berlin.
- Michor, P.W. and Mumford, D. (2013) A zoo of diffeomorphism groups on Rn. Ann. Glob. Anal. Geom. 44 (4), 529–540.
- Neidinger, R. D. (2010) Introduction to automatic differentiation and matlab object-oriented programming. SIAM Review, 52, 545–563.
- Pansu, P. (1989) Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. of Math. 129 (2), 1–60.
- Poinsot, L. (2017) Lipschitz groups and Lipschitz maps. International Journal of Group Theory 6 (1), 9–16.
- Rudin, W. (1976) Principles of Mathematical Analysis. McGraw–Hill, New York.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e46b5ed1-d987-4a6e-9d8f-9ab5e484bd8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.