Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
A methodology of textural analyses based on image analysis is proposed and tested based on study of fault rock samples from the Tatra Mts., Poland. The procedure encompasses: (1) SEM-BSE imagery of thin sections; (2) image classification using the maximum likelihood method, performed with GIS software; (3) statistical analysis and fractal dimension (self-similarity) analysis. The results of this method are comparable to those obtained with methods involving specialized software. The proposed analytical procedure particularly improves qualitative observations with quantitative data on grain shape and size distribution. The potential of the method is shown, as an auxiliary tool in determining the nature of deformation processes: the role of high-temperature dynamic recrystallization processes is recorded using grain shape indicators, whilst the switch from ductile to brittle conditions is reflected by the grain size distribution pattern.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
345--358
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
- Jagiellonian University, Institute of Geological Sciences, Gronostajowa 3a, 30-387 Kraków, Poland
Bibliografia
- 1. An, L., Sammis, C., 1994. Particle size distribution of cataclastic fault materials from Southern California: A 3-D study. Pure and Applied Geophysics, 143: 203-227.
- 2. Anderson, A.N., McBratney, A.B., Crawford, J.W., 1997. Applications of Fracials to Soil Studies. Advances in Agronomy, 63: 1-76.
- 3. Bac-Moszaszwili, M., Burchart, J., Głazek, A., Iwanow, A., Jaroszewski, W., Kotański, Z., Lefeld, J., Mastella, L., Ozimkowski, P., Roniewicz, P., Skupiński, A., Westwalewicz-Mogilska, E., 1979. Geological Map of the Polish Tatra Mountains (in Polish with English summary). Wyd. Geol., Warszawa.
- 4. Bagde, M.N., Raina, A.K., Chakraborty, A.K., Jethwa, J.L., 2002. Rock mass characterization by fractal dimension. Engineering Geology, 63: 141-155.
- 5. Biegel, R.L., Sammis, C.G., Dieterich, J.H., 1989. The frictional properties of a simulated gouge having a fractal particle distribution. Journal of Structural Geology, 11: 827-846.
- 6. Bjørk, T.E., Mair, K., Austrheim, H., 2009. Quantifying granular material and deformation: advantages of combining grain size, shape, and mineral phase recognition analysis. Journal of Structural Geology, 31: 637-653.
- 7. Blenkinsop, T.G., 1991. Cataclasis and processes of particle size reduction. Pure and Applied Geophysics, 136: 59-86.
- 8. Chester, J.S., Chester, F.M., Kronenberg, A.K., 2005. Fracture surface energy of the Punchbowl fault, San Andreas system. Nature, 437: 133-136.
- 9. Ciesielski, K., Pogoda, Z., 1996. The beginning of Polish topology. The Mathematical Intelligencer, 18: 32-39.
- 10. Cross, A.J., Ellis, S., Prior, D.J., 2015. A phenomenological numerical approach for investigating grain size evolution in ductiley deforming rocks. Journal of Structural Geology, 76: 22-34.
- 11. Cymerman, Z., 2009. Tektonika alpejska waryscyjskiego krystaliniku Tatr Zachodnich - przykłady od Łuczniańskiej Przełęczy po NW zbocza Wołowca - Wycieczka terenowa A5 (in Polish). In: LXXIX Zjazd Polskiego Towarzystwa Geologicznego “Budowa geologiczna Tatr i Podhala ze szczególnym uwzględnieniem zjawisk geotermalnych na Podhalu”, Bukowina Tatrzańska, 26-29 września 2009, materiały konferencyjne: 121-133.
- 12. Cymerman, Z., 2010. Crystalline nappe sheets from the Polish part of the Western Tatra Mts. (in Polish with English summary). IV Konferencja Przyroda Tatrzańskiego Parku Narodowego a Człowiek - Nauka a Zarządzanie Obszarem Tatr i Ich Otoczeniem. Zakopane, 14-16 Październik 2010: 47-53 https://tpn.pl/filebrowser/files/T1_06.pdf.
- 13. Deditius, A., 2004. Characteristics and isotopic age of the muscovite blastesis from the mylonitic zones in the crystalline rocks of the Western Tatra Mountains (in Polish with English summary). Prace Naukowe Uniwersytetu Śląskiego, 16: 121-150.
- 14. Fritz, H., Neubauer, F., Janák, M., Putiš, M., 1992. Variscan midcrustal thrusting in the Carpathians II: kinematics and fabric evolution of the Western Tatra basement. Terra Abstract, Supplement 2 to Terra Nova, 4: 24.
- 15. Gawęda, A., 2008. An apatite-rich enclave in the High Tatra granite (Western Carpathians): petrological and geochronological study. Geologica Carpathica, 59: 295-306.
- 16. Gawęda, A., Burda, J., 2004. Evolution of the metamorphism and deformations in the crystalline complex of the Western Tatra Mountains (in Polish with English summary). Prace Naukowe Uniwersytetu Sląskiego, 16: 53-184.
- 17. Gökyer, E., 2013. Understanding Landscape Structure Using Landscape Metrics. In: Advances in Landscape Architecture (ed. M. Özyavuz). InTech.
- 18. Hassanpour, A., 2012. The use of ArcGIS for determination of quartz optical axis orientation in thin section images. Journal of Microscopy, 245: 276-287.
- 19. Heilbronner, R., 2000. Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal of Structural Geology, 22: 969-981.
- 20. Heilbronner, R., Keulen, N., 2006. Grain size and grain shape analysis of fault rocks. Tectonophysics, 427: 199-216.
- 21. Ismat, Z., Mitra, G., 2005. Folding by cataclastic flow: evolution of controlling factors during deformation. Journal of Structural Geology, 27: 2181-2203.
- 22. Janák, M., 1994. Variscan uplift of the crystalline basement, Tatra Mts., central western Carpathians: evidence from 40Ar/39Ar laser probe dating of biotite and P-T-t paths. Geologica Carpathica, 45: 293-300.
- 23. Journel, A.G., 1988. New distance measures: the route toward truly non-Gaussian geostatistics. Mathematical Geology, 20: 459-475.
- 24. Jurewicz, E., 2005. Geodynamic evolution of the Tatra Mts. and the Pieniny Klippen Belt (Western Carpathians): problems and comments. Acta Geologica Polonica, 55: 295-338.
- 25. Jurewicz, E., Bagiński, B., 2005. Deformation phases in the selected shear zones within the Tatra Mountains granitoid core. Geologica Carpathica, 56: 17-28.
- 26. Kahan, Š., 1969. Eine neue Ansicht uber den geologischen Aufbau des Kristallinikums der West Tatra. Acta Geologica et Geographica Universitatis Comenianae, 12.
- 27. Kania, M., 2014. Microfabric diversity and grain shape analysis of fault rocks from the selected areas of the Western Tatra Mountains. Geological Quarterly, 58 (1): 3-18.
- 28. Keulen, N., Heilbronner, R., Stünitz, H., Boullier, A.-M., Ito, H., 2007. Grain size distributions of fault rocks: a comparison between experimentally and naturally deformed granitoids. Journal of Structural Geology, 29: 1282-1300.
- 29. Kohút, M., Janák, M., 1994. Granitoids of the Tatra Mts., Western Carpathians: field relations and petrogenetic implications. Geologica Carpathica, 45: 301-311.
- 30. Kohút, M., Poller, U., Gurk, C., Todt, W., 2008. Geochemistry and U-Pb detrital zircon ages of metasedimentary rocks of the Lower Unit, Western Tatra Mountains (Slovakia). Acta Geologica Polonica, 58: 371-384.
- 31. Lin, A., 1999. S-C cataclasite in granitic rock. Tectonophysics, 304: 257-273.
- 32. Lin, A., 2001. S-C fabrics developed in cataclastic rocks from the Nojima fault zone, Japan and their implications for tectonic history. Journal of Structural Geology, 23: 1167-1178.
- 33. Nawrocki, J., Becker, A., 2017. Geological Atlas of Poland (in Polish). PIG-PIB, Warszawa.
- 34. Passchier, C., Trouw, R., 2005. Microtectonics, 2nd Revised Edition. Springer.
- 35. Piotrowska, K., 2016. Detailed geological map of the Tatra Mountains. Polish Geological Institute map server URL http://cbdgportal.pgi.gov.pl/smgt/.
- 36. Sammis, C.G., 1997. Fractal Fragmentation and Frictional Stability in Granular Materials. In: IUTAM Symposium on Mechanics of Granular and Porous Materials: Proceedings of the IUTAM Symposium Held in Cambridge, U.K., 15-17 July 1996 (eds. N.A. Fleck and A.C.F. Cocks): 23-34. Springer, Netherlands, Dordrecht.
- 37. Sammis, C.G., King, G.C.P., 2007. Mechanical origin of power law scaling in fault zone rock. Geophysical Research Letters, 34: L04312.
- 38. Sammis, C., King, G., Biegel, R., 1987. The kinematics of gouge deformation. Pure and Applied Geophysics, 125: 777-812.
- 39. Sevcikova, H., Percival, D., Gneiting, T., 2014. fractaldim: estimation of fractal dimensions. https://cran.r-project.org/package=fractaldim.
- 40. Skupiński, A., 1975. Petrogenesis and structure of the crystalline core between Ornak and Rohacze, Western Tatra Mts (in Polish with English summary). Studia Geologica Polonica, 49: 1-105.
- 41. Steacy, S. J., Sammis, C.G., 1991. An automaton for fractal patterns of fragmentation. Nature, 353: 250-252.
- 42. Sun, J., Yang, J., Zhang, C., Yun, W., Qu, J., 2013. Automatic remotely sensed image classification in a grid environment based on the maximum likelihood method. Mathematical and Computer Modelling, 58: 573-581.
- 43. Śmigielski, M., Sinclair, H.D., Stuart, F.M., Persano, C., Krzywiec, P., 2016. Exhumation history of the Tatry Mountains, Western Carpathians, constrained by low-temperature thermochronology. Tectonics, 35: 187-207.
- 44. Tarquini, S., Favalli, M., 2010. A microscopic information system (MIS) for petrographic analysis. Computers and Geosciences, 36: 665-674.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e46ad248-c8e8-47c4-81cc-204db9d13232
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.