PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time-harmonic finite element model for brushless doubly-fed induction machine in natural operating mode

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The natural mode of operation for the brushless doubly-fed induction machine is a particular instance of synchronism at a so-called natural rotor velocity when one stator winding is powered by an AC and the other by a DC voltage source. Consequently, in addition to the rotating magnetic field, there exists a magnetic field that is fixed to the stator frame of reference. Analysis in this specific mode is essential as the natural velocity arises from the choice of pole numbers, thereby determining machine efficiency. However, this presents a significant challenge when it comes to mathematical modeling using complex-valued steady-state models through either equivalent-circuit or finite element analysis. This paper presents a study on the extension of the recently-proposed steady-state complex-valued finite element model for the brushless doubly-fed induction machine to enable its application in the natural operating mode. A high correlation with the data obtained from a time-stepping model is obtained for the extended model when subjected to both low and high levels of saturation of the magnetic circuit. This extension makes the whole approach applicable in all operating conditions and modes of the brushless doubly-fed induction machine. Considering the nearly two orders of magnitude lower computational costs associated with analysis via the proposed model compared to time-stepping analysis, it is particularly useful in scenarios that involve extensive computations and require multiple cases to be considered such as design sensitivity analysis, topology optimization or a connection with machine learning techniques.
Rocznik
Strony
615--628
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr., wz.
Twórcy
  • Opole University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics, 45-758 Opole, ul. Prószkowska 76
  • Opole University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics, 45-758 Opole, ul. Prószkowska 76
Bibliografia
  • [1] McMahon R.A., Roberts P., Wang X., Tavner P.J., Performance of BDFM as generator and motor, IET Electr. Power Appl., vol. 153, no. 2, pp. 289–299 (2006), DOI: 10.1049/ip-epa:20050289.
  • [2] Han P., Cheng M., Ademi S., Jovanovic M.G., Brushless doubly-fed machines: opportunities and challenges, Chin. Journ. of Electr. Eng., vol. 4, no. 2, pp. 1–17 (2018).
  • [3] Strous T.D., Polinder H., Ferreira J.A., Brushless doubly fed induction machines for wind turbines: developments and research challenges, IET Electric Power Applications, vol. 11, no. 6, pp. 991–1000 (2017).
  • [4] McMahon R., Tavner P., Abdi E., Malliband P., Barker D., Characterising brushless doubly fed machine rotors, IET Electric Power App., vol. 7, no. 7, pp. 535–543 (2013), DOI: 10.1049/iet-epa.2012.0238.
  • [5] Ademi S., Jovanovic M., High-efficiency control of brushless doubly-fed machines for wind turbines and pump drives, Energy Conversion and Management, vol. 81, no. 1, pp. 120–132 (2014), DOI: 10.1016/j.enconman.2014.01.015.
  • [6] Tohidi S., Analysis and simplified modeling of brushless doubly-fed induction machine in synchronous mode of operation, IET Electric Power Applications, vol. 10, no. 2, pp. 110–116 (2016), DOI: 10.1049/iet-epa.2015.0217.
  • [7] Su J., Chen Y., Zhang D., Kang Y., Stand-Alone brushless doubly fed generation control system with feedforward parameters identification, IEEE Trans. Ind. Informatics, vol. 11, no. 15, pp. 6011–6022 (2019).
  • [8] Oraee A., Abdi E., McMahon R.A., Converter rating optimisation for a brushless doubly fed induction generator, IET Renewable Power Generation, no. 9, pp. 360–367 (2015), DOI: 10.1049/ietrpg.2014.0249.
  • [9] Roberts P.C., McMahon R., Tavner P.J., Maciejowski J.M., Flack T.J., Equivalent circuit for the brushless doubly fed machine (BDFM) including parameter estimation and experimental verification, IET Electric Power Appl., vol. 152, no. 4, pp. 933–942 (2005), DOI: 10.1049/ip-epa:20045106.
  • [10] Ramtin S., Madani S.M., Lipo T.A., Agha Kashkooli M.R., Ataei M., Ademi S., Voltage-Dip Analysis of Brushless Doubly Fed Induction Generator Using Reduced T-model, IEEE Trans. Industr. Electronics, vol. 66, no. 10, pp. 7510–7519 (2018), DOI: 10.1109/TIE.2018.2880713.
  • [11] Yu K., Tag P., Novel Equivalent Circuit Model and Theoretical Analysis of Doubly Fed Machine, IEEE Trans. Energy Conv., vol. 34, no. 2, pp. 1073–1081 (2018).
  • [12] Ge J., Xu W., Liu Y., Xiong F., Novel Equivalent Circuit Model Applicable to All Operation Modes for Brushless Doubly Fed Induction Machines, IEEE Trans. Industr. Electronics, vol. 69, no. 12, pp. 12540–12550 (2022), DOI: 10.1109/TIE.2022.3144567.
  • [13] Oraee A., McMahon R., Abdi E., Abdi S., Ademi S., Influence of Pole-pair Combinations on the Characteristics of the Brushless Doubly Fed Induction Generator, IEEE Trans. Energy Conv., vol. 35, no. 3, pp. 1151–1159 (2020), DOI: 10.1109/TEC.2020.2982515.
  • [14] Olubamiwa O.I., Gule N., Kamper M.J., Coupled circuit analysis of the brushless doubly fed machine using the winding function theory, IET Electr. Power Appl., vol. 14, no. 9, pp. 1558–1569 (2020).
  • [15] Gorginpour H., Oraee H., McMahon R.A., A novel modeling approach for design studies of brushless doubly fed induction generator based on magnetic equivalent circuit, IEEE Trans. Energy Conv., vol. 28, no. 4, pp. 902–912 (2013).
  • [16] Wang X., Strous T.D., Lahaye D., Polinder H., Ferreira J.A., Finite element modeling of brushless doubly-fed induction machine based on magneto-static simulation, Proc. of IEMDC, Coeur d’Alene, ID, USA, pp. 315–321 (2015), DOI: 10.1109/IEMDC.2015.7409077.
  • [17] Wang X., Strous T.D., Lahaye D., Polinder H., Ferreira J.A., Modeling and Optimization of Brushless Doubly-Fed Induction Machines Using Computationally Efficient Finite-Element Analysis, IEEE Trans. Ind. Appl., vol 52, no. 6, pp. 4525–4534 (2016), DOI: 10.1109/TIA.2016.2593715.
  • [18] Jagiela M., Wang X., McMahon R., Garbiec T., Time-harmonic field-circuit model for brushless doubly fed induction machine, IET Electric Power Applications, Willey, pp. 965–975 (2023), DOI: 10.1049/elp2.12317.
  • [19] Bastos J.P.A., Sadowski N., Electromagnetic Modelling by Finite Element Methods, Marcel-Dekker, NewYork (2003).
  • [20] Takorabet N., Laporte B., Mezani S., An approach to compute saturated induction motors in steady state, Proc. of IEMDC, USA, Madison, vol. 2, pp. 1646–1650, 1210672 (2003), DOI: 10.1109/IEMDC.
  • [21] Jagiela M., 2D-Dxf File with Geometry Description for D270 BDFIM Stator and Rotor Cores (2022).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e45bd8f9-b07b-4dd9-81e7-81f20da003ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.