PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of soil risk element contamination level on the element contents in Ocimum basilicum L.

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Red basil (Ocimum basilicum L.) cv. Red Rubin was cultivated in model pot experiment in the soil amended by arsenic, cadmium and lead solutions in stepwise concentrations representing the soil concentration levels of former mining area in the vicinity of Příbram, Czech Republic. The element levels added to the soil reached up to 40 mg Cd, 100 mg As, and 2000 mg Pb per kg of soil. Moreover, essential macro-and microelements as well as cyanidine contents were investigated to assess their potential interactions with the risk elements. The extractable element portions in soils determined at the end of vegetation period differed according to the individual elements. Whereas the plant-available (extractable with 0.11M CH3COOH) content of Cd represented 70-100% of the added Cd, the mobile portion of Pb did not exceed 1%. The risk element content in plants reflected the increasing element contents in soil. The dominant element portions remained in plant roots indicating the limited translocation ability of risk elements to the aboveground biomass of this plant species. Although the risk element contents in amended plants significantly increased, no visible symptoms of phytotoxicity occurred. However, the effect of enhanced risk element contents on the essential element uptake was assessed. Considering inter-element relationships, elevated sulphur levels were seen in amended plants, indicating its possible role of phytochelatin synthesis in the plants. Moreover, the molybdenum contents in plant biomass dropped down with increasing risk element uptake by plants confirming As-Mo and Cd-Mo antagonism. The increasing content of cyanidine in the plant biomass confirmed possible role of anthocyanins in detoxification mechanism of risk element contaminated plants and suggested the importance of anthocyanin pigments for risk element tolerance of plants growing in contaminated areas.
Słowa kluczowe
Rocznik
Strony
47--53
Opis fizyczny
Bibliogr. 42 poz., tab.
Twórcy
  • Czech University of Life Sciences Prague, Czech Republic Faculty of Agrobiology, Food and Natural Resources
autor
  • Czech University of Life Sciences Prague, Czech Republic Faculty of Agrobiology, Food and Natural Resources
autor
  • Czech University of Life Sciences Prague, Czech Republic Faculty of Agrobiology, Food and Natural Resources
autor
  • Czech University of Life Sciences Prague, Czech Republic Faculty of Agrobiology, Food and Natural Resources
Bibliografia
  • [1] Bhargava, A., Carmona, F.F., Bhargava, M. & Srivasta, S. (2012). Approaches for enhanced phytoextraction of heavy metals, Journal of Environmental Management, 105, pp. 103-120.
  • [2] Bosiacki, M., Kleiber, T. & Kaczmarek, J. (2013). Evaluation of suitability of Amaranthus caudatus L. and Ricinus communis L. in phytoextraction of cadmium and lead from contaminated substrates, Archives of Environmental Protection, 39, pp. 47-59.
  • [3] Castañeda-Ovando, A., Pacheco-Hernandez, M.L., Paez-Hernandez, M.E., Rodriguez, J.A. & Galan-Vidal, C.A. (2009). Chemical studies of anthocyanins: A review, Food Chemistry, 113, 4, pp. 859-871.
  • [4] Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants, Biochimie, 88, 11, pp. 1707-1719.
  • [5] Dai, L.P., Xiong, Z.T., Huang, Y. & Li, M.J. (2006). Cadmium-induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata, Environmental Toxicology, 21, 5, pp. 505-512.
  • [6] Ducsay, L. (2011). The chlorophyll, cadmium and zinc contents in sunflower leaves under cadmium and zinc stress conditions, Chemické Listy, 105, 4, pp. 269-272. (in Czech)
  • [7] Esparza, I. Salinas, I. Caballero I., Santamaría C., Calvo I., García-Mina J.M. & Fernández J.M. (2004). Evolution of metal and polyphenol content over a 1-year period of vinification: sample fractionation and correlation between metals and anthocyanins, Analytica Chimica Acta, 524, 1-2, pp. 215-224.
  • [8] Hale, K.L., McGrath, S.P., Lombi, E., Stack, S.M., Terry, N., Pickering, I.J. & Pilon-Smits, E.A.H. (2001). Molybdenum sequestration in Brassica species. A role for anthocyanins? Plant Physiology, 126, 4, pp. 1391-1402.
  • [9] Hale, K.L., Tufan, H.A., Pickering, I.J., George, G.N., Terry, N., Pilon, M. & Pilon-Smits, E.A.H. (2002). Anthocyanins facilitate tungsten accumulation in Brassica, Physiologia Plantarum, 3, 116, pp. 351-358.
  • [10] Hall, J.L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance, Journal of Experimental Botany, 53, 366, pp. 1-11.
  • [11] Chand, S., Pandey, A. & Patra, D.D. (2012). Influence of vermicompost on dry matter yield and uptake of Ni and Cd by chamomile (Matricaria chamomilla) in Ni- and Cd-Polluted Soil, Water, Air, Soil Pollution, 223, 5, pp. 2257-2262.
  • [12] Iwashina, T. (2000). The structure and distribution of the flavonoids in plants, Journal of Plant Research, 113, 1111, pp. 287-299.
  • [13] Kowalczyk, E., Kopff, A., Fijałkowski, P., Kopff, M., Niedworok, J., Błaszczyk, J., Kędziora, J. & Tyślerowicz, P. (2003). Effect of anthocyanins on selected biochemical parameters in rats exposed to cadmium, Acta Biochimica Polonica, 50, 2, pp. 543-548.
  • [13] Meloun, M. & Militký, J. (2004). Statistical analysis of the experimental data. Academia, Praha 2004.
  • [14] Miholová, D., Mader, P., Száková, J., Slámová, A. & Svatoš, Z. (1993). Czechoslovakian biological certified reference materials and their use in the analytical quality assurance system in a trace element laboratory, Fresenius Journal of Analytical Chemistry, 345, 2-4, pp. 256-260.
  • [15] Nyman, N.A. & Kumpulainen, J.T. (2001). Determination of anthocyanidins in berries and red wine by high- -performance liquid chromatography, Journal of Agricultural and Food Chemistry, 49, 9, pp. 4183-4187.
  • [16] Okoye, C.O.B., Chukwuneke, A.M., Ekere, N.R. & Ihedioha, J.N. (2013). Simultaneous ultraviolet-visible (UV-VIS) spectrophotometric quantitative determination of Pb, Hg, Cd, As and Ni ions in aqueous solutions using cyanidin as a chromogenic reagent, International Journal of Physical Sciences, 8, 3, pp. 98-102.
  • [17] Phippen, W.B. & Simon, J.E. (1998). Anthocyanins in basil (Ocimum basilicum L.), Journal of Agricultural Food Chemistry, 46, 5, pp. 1734-1738.
  • [18] Posmyk, M.M., Kontek, R. & Janas, K.M. (2009). Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress, Ecotoxicology and Environmental Safety, 72, 2, pp. 596-602.
  • [19] Public notice No. 13/1994, regulating some details concerning the preservation of agricultural lands available. Czech Ministry of the Environment, Prague 1994.
  • [20] Pulford, I.D. & Watson, C. (2002). Phytoremediation of heavy metal-contaminated land by trees - A review, Environment International, 29, 4, pp. 529-540.
  • [21] Quevauviller, P., Ure, A., Muntau, H. & Griepink, B. (1993). Improvement of analytical measurements within the BCR-program - Single and sequential extraction procedures applied to soil and sediment analysis, International Journal of Environmental Analytical Chemistry, 51, 1-4, pp. 129-134.
  • [22] Sainger, P.A., Dhankhar, R., Sainger, M., Kaushik, A. & Singh, R.P. (2011). Assessement of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent, Ecotoxicology and Environmental Safety, 74, 8, pp. 2284-2291.
  • [23] Sastre, J., Hernández, E, Rodríguez, R., Alcobé, X., Vidal, M. & Rauret, G. (2004). Use of sorption and extraction tests to predict the dynamics of the interaction of trace elements in agricultural soils contaminated by a mine tailing accident, Science of The Total Environment, 329, 1-3, pp. 261-281.
  • [24] Simon, J.E., Morales, M.R., Phippen, W.R., Vieira, R.F. & Hao, Z. (1999). Basil as a source of aroma compounds and a popular culinary and ornamental herbs. In J. Janick (Ed.) Perspectives on new crops and new uses: Biodiversity and agricultural sustainability, pp. 499-505, ASHS Press, Alexandria, VA 1999.
  • [25] Smith, G.M. & White, C.L. (1997). A molybdenum-sulfur-cadmium interaction in sheep, Australian Journal of Agricultural Research, 48, 2, pp. 147-154.
  • [26] Solanki, R. & Dhankhar, R. (2011). Biochemical changes and adaptive strategies of plants under heavy metal stress, Biologia, 66, 2, pp. 195-204.
  • [27] Soudek, P., Petrová, Š., Benešová, D., Koryta, J. & Vaněk, T. (2008). Phytoremediation and possibilities of increasing its effectivity, Chemické Listy, 102, 5, pp. 346-352. (in Czech)
  • [28] Soudek, P., Víchová, L., Valenová, Š., Podlipná, R., Malá, J. & Vaněk, T. (2006). Arsenic and its uptake by plants, Chemické listy, 100, 5, pp. 323-329. (in Czech)
  • [29] Stancheva, I., Geneva, M., Hristozkova, M., Markovska, Y. & Salamon, I. (2010). Antioxidant capacity of sage grown on heavy metal-polluted soil, Russian Journal of Plant Physiology, 57, 6, pp. 799-805.
  • [30] Száková, J., Havlík, J., Valterová, B., Tlustoš, P. & Goessler, W. (2010). The contents of risk elements, arsenic speciation, and possible interactions of elements and betalains in beetroot (Beta vulgaris, L.) growing in contaminated soil, Central European Journal of Biology, 5, 5, pp. 692-701.
  • [31] Száková, J., Tlustoš, P., Balík, J., Pavlíková, D. & Balíková, M. (2000). Efficiency of extractants to release As, Cd, and Zn from main soil compartments, Analusis, 28, 9, pp. 808-812.
  • [32] Šmejkalová, M., Mikanová, O. & Borůvka, L. (2003). Effect of heavy metals concentration on biological activity of soil microorganisms, Plant, Soil and Environment, 49, 7, pp. 321-326.
  • [33] Takeda, K., Yanagisawa, M., Kifune, T., Kinoshita, T. & Timberlake, C.F. (1994). A blue pigment complex in flowers of Salvia patens, Phytochemistry, 35, 5, pp. 1167-1169.
  • [34] Tlustoš, P., van Dijk, D., Száková, J. & Pavlíková, D. (1994). Cd and Zn release through the selected extractants, Rostlinná Výroba, 40, 12, pp. 1107-1121.
  • [35] Valterová, B., Száková, J., Koplík, R., Havlík, J., Tlustoš, P. & Mestek, O. (2012). Fractionation and speciation of As, Cd and Zn in aboveground biomass of alpine pennycress (Thlaspi caerulescens J. et C. PRESL), Chemické Listy, 106, 5, pp. 392-397. (in Czech)
  • [36] Vieira, R.F. & Simon, J.E. (2006). Chemical characterization of basil (Ocimum spp.) based on volatile oils, Flavour and Fragrance Journal, 21, 2, pp. 214-221.
  • [37] Vysloužilová, M., Tlustoš, P., Száková, J. & Pavlíková, D. (2003). As, Cd, Pb and Zn uptake by different Salix spp. grown at soils enriched by high loads of these elements, Plant, Soil and Environment, 49, 5, pp. 191-196.
  • [38] Weber, G. & Konieczyński, P. (2003). Speciation of Mg, Mn and Zn in extracts of medicinal plants, Analytical and Bioanalytical Chemistry, 375, 8, pp. 1067-1073.
  • [39] Welch, C.R., Wu, Q. & Simon, J.E. (2008). Recent advances in anthocyanin analysis and characterization, Current Analytical Chemistry, 4, 2, pp. 75-101.
  • [40] Zhang, G.P., Fukami, M. & Sekimoto, H. (2000). Genotypic differences in effects of cadmium on growth and nutrient compositions in wheat, Journal of Plant Nutrition, 23, 9, pp. 1337-1350.
  • [41] Zheljazkov, V.D. & Nielsen, N.E. (1996). Effect of heavy metals on peppermint and cornmint, Plant and Soil, 178, 1, pp. 59-66.
  • [42] Zheljazkov, V.D., Craker, L.E., Xing, B., Nielsen, N.E. & Wilcox, A. (2008). Aromatic plant production on metal contaminated soils, Science of The Total Environment, 395, 2-3, pp. 51-62.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e45b10e7-3f84-427d-b25f-9f06c041bb58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.