PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dehydrogenazy alkoholowe pochodzenia mikrobiologicznego : właściwości i ich zastosowanie

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Microbial alcohol dehydrogenases : properties and their application
Języki publikacji
PL
Abstrakty
EN
Biotransformations involve mainly microorganisms or individual enzymes applied to catalyze chemical reactions [1]. This field of science is particularly important, because it allows to obtain optically active compounds, which are valuable raw materials for pharmaceutical (Fig. 3, Fig. 6, Fig. 20, Fig. 21), wood and paper (Fig. 18), food (Fig. 4), textile (Fig. 12), cosmetic (Fig. 14) industries and environmental protection (Fig. 19). Oxidoreductases, in particular alcohol dehydrogenases (E.C.1.1.1.1, ADH) are valuable biocatalysts enabling to obtain enantiomerically pure products. These enzymes, commonly found in nature, catalyze both oxidation and reduction reactions [3]. Described dehydrogenases descend from mesophilic, psychrophilic and thermophilic microorganisms. The increasing application of thermophiles is due to their exceptional resistance against heat and organic solvents. The article describes and explains how microbial ADH’s interact with NAD+/NADH or NADP+/NADPH and present those enzymes which catalyze reactions with both forms of cofactors. The alcohol dehydrogenases from yeast are particularly commonly used [9–14]. Bacterial enzymes, among them ADH isolated from Thermoanaerobacter brockii [47–51], are widely distributed too. In addition, the literature describes a number of (R)-specific ADH’s from Lactobacillus kefir [40–42], L. brevis [45, 46], Leisofonia sp. [20] Pseudomonas fluorescens [23] and (S)- -specific ADH’s from Rhodococcus erythropolis [15, 16], Thermus sp. [30], Sulfolobus solfataricus [23, 28] and many others.
Rocznik
Strony
1049--1071
Opis fizyczny
Bibliogr. 53 poz., schem., tab.
Twórcy
  • Uniwersytet Przyrodniczy we Wrocławiu Katedra Chemii ul. C. K. Norwida 25/27, 50-375 Wrocław
  • Uniwersytet Przyrodniczy we Wrocławiu Katedra Chemii ul. C. K. Norwida 25/27, 50-375 Wrocław
Bibliografia
  • [1] T. Kołek, Biotransformacje, AWA, Wrocław 2005.
  • [2] J. Parkot, H. Groger, W. Hummel, Appl. Microbiol. Biotechnol., 2010, 86, 1813.
  • [3] P. Goswani, S.S.R. Chinnadayyala, M. Chakraborty, A.K. Kumar, A. Kakoti, Appl. Microbiol. Biotechnol., 2013, 97, 4259.
  • [4] J. Rocha-Martin, D. Vega, J.M. Bolivar, A. Hidalgo, J. Berenguer, J.M. Guisan, F. Lopez-Gallego, Bioresour. Technol., 2012, 103, 343.
  • [5] A. Dołęga, Coord. Chem. Rev., 2010, 254, 916.
  • [6] L. Lauterbach, O. Lenz, K.A. Vincent, FEBS J., 2013, 280, 3058.
  • [7] O. de Smidt, J.C. du Preez, J. Albertyn, FEMS Yeast Res., 2012, 12, 33.
  • [8] O. de Smidt, J. C. du Preez, J. Albertyn, FEMS Yeast Res., 2008, 8, 967.
  • [9] Y. Pocker, Chem. Biol. Interact., 2001, 130-132, 383.
  • [10] E. Magonet, P. Hayen, D. Delforge, E. Delaive, J. Remacle, Biochem. J., 1992, 287 (2), 361.
  • [11] F.M. Dickinson, G.P. Monger, Biochem. J., 1973, 131, 261.
  • [12] B. Orlich, H. Berger, M. Lade, R. Schomacker, Biotechnol. Bioeng., 2000, 70, 638.
  • [13] F.M. Dickinson, S. Dack, Chem. Biol. Interact., 2001, 130-132, 417.
  • [14] T. Kometani, Y. Morita, H. Yoshii, Y. Kiyama, R. Matsuno, J. Ferment. Bioeng., 1995, 80, 180.
  • [15] K. Abokitse, W. Hummel, Appl. Microbiol. Biotechnol., 2003, 62, 380.
  • [16] W. Kruse, W. Hummel, U. Kragl, Recl. Trav. Chim. Pays-Bas, 1996, 115, 239.
  • [17] B. Kosjek, W. Stampfer, M. Pogorevc, W. Goessler, K. Faber, W. Kroutil, Biotechnol. Bioeng., 2004, 86, 55.
  • [18] M. Rauter, J. Kasprzak, K. Becker, K. Baronian, R. Bode, G. Kunze, H.-M. Vorbrodt, J. Mol. Catal. B: Enzym., 2014, 104, 8.
  • [19] B. Kosjek, W. Stampfer, R. van Deursen, K. Faber, W. Kroutil, Tetrahedron, 2003, 59, 9517.
  • [20] K. Inoue, Y. Makino, N. Itoh, Tetrahedron: Asymmetry, 2005, 16, 2539.
  • [21] N. Itoh, Appl. Microbiol. Biotechnol., 2014, 98, 3889.
  • [22] H. Toda, R. Imae, N. Itoh, Tetrahedron: Asymm., 2012, 23, 1542.
  • [23] P. Hildebrandt, T. Riermeier, J. Altenbuchnerc, U. T. Bornscheuer, Tetrahedron: Asymm., 2001, 12, 1207.
  • [24] A. Celik, F. Aktaş, J. Mol. Catal. B: Enzym., 2013, 89, 114.
  • [25] C.A. Raia, S. D’Auria, Biosens. Bioelectron., 1995, 10, 135.
  • [26] L. Alvarez, F. Acevedo, A. Illanes, Process Biochem., 2011, 46, 1342.
  • [27] P.P. Giovannini, S. Hanau, M. Rippa, O. Bortolini, M. Fagagnolo, A. Medici, Tetrahedron, 1996, 52, 1669.
  • [28] A. Pennacchio, L. Esposito, A. Zagari, M. Rossi, C.A. Raia, Extremophiles, 2009, 13, 751.
  • [29] A. Pennacchio, V. Sannino, G. Sorrentino, M. Rossi, C.A. Raia, L. Esposito, Appl. Microbiol. Biotechnol., 2013, 97, 3949.
  • [30] H. Man, S. Gargiulo, A. Frank, F. Hollmann, G. Grogan, J. Mol. Catal. B: Enzym., 2014, 105, 1.
  • [31] A. Pennacchio, B. Pucci, F. Secundo, F. La Cara, M. Rossi, C.A. Raia, Appl. Environ. Microbiol., 2008, 74, 3949.
  • [32] W. Kanchanarach, G. Theeragool, T. Yakushi, H. Toyama, O. Adachi, K. Matsushita, Appl. Microbiol. Biotechnol., 2010, 85, 741.
  • [33] K. Velonia, I. Tsigos, V. Bouriotis, I. Smonou, Bioorg. Med. Chem. Lett., 1991, 9, 65.
  • [34] S.-X. Xie, J. Ogawa, S. Shimizu, Biosci. Biotechnol. Biochem. 1999, 63, 1721.
  • [35] D. Zhu, H. T. Malik, L. Hua, Tetrahedron: Asymmetry, 2006, 17, 3010.
  • [36] M. Stibor, M. Potocky, A. Pickova, P. Karasova, N. J. Russell, B. Kralova, Enzyme Microb. Technol., 2003, 32, 532.
  • [37] F. Boratyński, J. Pannek, P. Walczak, A. Janik-Polanowicz, E. Huszcza, E. Szczepańska, E. Martinez-Rojas, T. Olejniczak, Process Biochem., 2014, 49, 1637.
  • [38] F. Boratyński, M. Smuga, C. Wawrzeńczyk, Food Chem., 2013, 141, 419.
  • [39] T. Olejniczak, F. Boratyński, A. Białońska, J. Agric. Food Chem., 2011, 59, 6071.
  • [40] C. Bradshaw, W. Hummel, C.H. Wong, J. Org. Chem., 1992, 57 (5), 1532.
  • [41] A. Weckebecker, W. Hummel, Biocatal. Biotransform., 2006, 24, 380.
  • [42] P. Bisel, L. Walter, M. Nieger, W. Hummel, M. Muller, Tetrahedron: Asymm., 2007, 18, 1142.
  • [43] D.M.-R. de Temino, W. Hartmeier, M.B. Ansorge-Schumacher, Enzyme Microb. Technol., 2005, 36, 3.
  • [44] N. Oberleitner, C. Peters, F. Rudroff, U.T. Bornscheuer, M.D. Mihovilovic, J. Biotechnol., 2014, DOI: 10.1016/j.jbiotec.2014.04.008.
  • [45] M. Eckstein, M.V. Filho, A. Liese, U. Kragi, Chem. Commun., 2004, 1084.
  • [46] D. Drochner, M. Muller, Eur. J. Org. Chem., 2001, 2001, 211.
  • [47] O. Bogin, M. Peretz, Y. Burstein, Protein Sci., 1997, 6, 450.
  • [48] F.M. Bastos, T.K. FranCa, G.D.C. Machado, G.F. Pinto, E.G. Oestreicher, L.M.C. Paiva, J. Mol. Catal. B: Enzym., 2002, 19-20, 459.
  • [49] E. Keinan, E.K. Hafeli, K.K. Seth, R. Lamed, J. Am. Chem. Soc., 1986, 108, 162.
  • [50] F.M. Bastos, A.G. dos Santos, J. Jones Jr, E.G. Oestreicher, G.F. Pinto, L.M.C. Paiva, Biotechnol. Tech., 1999, 13, 661.
  • [51] E. Pękala, D. Żelaszczyk, Sci. Pharm., 2009, 77, 9.
  • [52] M.M. Musa, K.I. Ziegelmann-Fjeld, C. Vieille, J.G. Zeikus, R.S. Phillips, J. Org. Chem., 2007, 72, 30.
  • [53] M.M. Musa, R.S. Phillips, M. Laivenieks, C. Vieille, M. Takahashie, S.M. Hamdane, Org, Biomol. Chem., 2013, 11, 2911.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4593253-f7dc-4922-bfea-5939d5293b00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.