PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multiscale Approach for Modeling Fracture in Piezoelectric Ceramics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The barium titanate material is the most intensively studied perovskite material due to its wide use in the ceramic industry. Barium titanate is also technologically important material owing to its ferroelectric behaviour at and above room temperature. The paper presents an effective implementation of boundary element multiscale method in analyzing of fracture of piezoelectric ceramics. This method can be easily used to get a better understanding of damage mechanism in the ceramic materials in order to improve the constitutive models and to support the future design of those materials. In this method the relation of boundary element method for obtaining traction is presented. The main advantage of boundary element method is the reduction of the dimensionality of the problem. Boundary element method becomes very attractive in cases of numerically complex problems that are computationally expensive.
Słowa kluczowe
Twórcy
autor
  • Rzeszow University of Technology, Department of Materials Forming and Processing, 8 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
  • Rzeszow University of Technology, Department of Materials Forming and Processing, 8 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
  • Rzeszow University of Technology, Department of Materials Forming and Processing, 8 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
autor
  • Institute of Power Engineering, Ceramic Department Cerel, 1 Techniczna Str., 36-040 Boguchwała, Poland
Bibliografia
  • [1] A. C. Roy, D. Mohanta, Scr. Mater. 61, 891 (2009).
  • [2] M. M. Vijatović, J. D. Bobić, B. D. Stojanović, Sci. Sinter. 40, 235 (2008).
  • [3] Y. Iqbal, A. Jamal, R. Ullah, M.N. Khan, R. Ubic, Bull. Mater. Sci. 35, 387 (2012).
  • [4] H. A. Sosa, Int. J. Solids Struct. 29, 2613 (1992).
  • [5] C. C. Fulton, H. J. Gao, Appl. Mech. Rev. 50, S56 (1997).
  • [6] C. V. Verhosel, J. J. C. Remmers, M. A. Gutierrez, Int. J. Num. Meth. Eng. 82, 966 (2009).
  • [7] R. Fenner, Boundary Element Methods for Engineers: Part II Plane Elastic Problems, London 2014.
  • [8] D. Beskos, G. Maier (Eds.), Boundary Element Advances in Solid Mechanics. Wien 2014.
  • [9] T. A. Cruse, Comp. Struct. 3, 509 (1973).
  • [10] M. D. Snyder, T. A. Cruse, Int. J. Fract. 11, 315 (1975).
  • [11] I. Pasternak, Eng. Anal. Bound. Elem. 36, 1931 (2012).
  • [12] W. L. Yin, Int. J. Solids Struct. 37, 5257 (2000).
  • [13] A. R. Khoei, F. Jahanbakhshi, A. Aramoon, Mech. Mater. 83, 40 (2015).
  • [14] R. M. Sencu, Z. Yang, Y. C. Wang, Eng. Fract. Mech. 163, 499 (2016).
  • [15] V. G. Kouznetsova, M. G. D. Geers, W. A. M. Brekelmans, Comput. Meth. Appl. Mech. Eng. 193, 5525 (2004).
  • [16] M. Silani, S. Ziaei-Rad, H. Talebi, T. Rabczuk, Theor. Appl. Fract. Mech. 74, 30 (2014).
  • [17] H. D. Espinosa, P. D. Zavattieri, Mech. Mater. 35, 333 (2003)
  • [18] H. D. Espinosa, P. D. Zavattieri, Mech. Mater. 35, 365 (2003).
  • [19] G. K. Sfantos, M. H. Aliabadi, Int. J. Numer. Meth. Eng. 69, 1590 (2007).
  • [20] D. Fang, J. Liu, Fracture Mechanics of Piezoelectric and Ferroelectric Solids. Beijing 2013.
  • [21] K. M. Liew, Y. Sun, S. Kitipornchai, Int. J. Numer. Meth. Eng. 69, 729 (2007).
  • [22] Y.-B. Wang, Y.-Z. Sun, Eng. Fract. Mech. 72, 2128-2143 (2005).
Uwagi
EN
The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement No. PITN-GA-2013-606878.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4572ea5-4c37-4482-8db7-cb9a2c97e43e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.