PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Application of Membrane Bioreactor for Greywater Treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Urban planning management should consider wastewater as a challenge. Wastewater, in this case, grey water, is full of dangerous contaminants and, at specific concentrations, can turn into a substance that affects the environment. The effluent of the released waste must therefore be managed to ensure that it complies with the government’s quality standard criteria. The membrane bioreactor (MBR) technology process produced waste effluents with low concentrations of biological oxygen demand (BOD5), chemical oxygen demand (COD), and total organic carbon (TOC), proving its higher efficiency as a biological processing stage. Total coliforms and E. coli are not present in processed products, detergents and total suspended solid (TSS) are effectively degraded. This is made possible by the considerably lower organic load; as a result, biomass accumulation slows and mixed liquor suspended solids (MLSS), which have low value, are produced. With the assistance of continuous airflow, and without the use of chemicals or backwashing, an ultrafiltration module (UF) with a membrane cut-off size small enough to be able to create a constant permeate flux during the grey water treatment process is necessary. Although processed grey water does not pass denitrification, all parameters linked to the quality of the effluent water exceed environmental quality criteria.
Słowa kluczowe
Rocznik
Strony
207--213
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Bandung Health Polytechnic, Environmental Sanitation Department, Bandung, Pajajaran Str. 56, Bandung, 40171, Indonesia
  • Center of Excellence on Utilization of Local Material for Health Improvement, Bandung Health Polytechnic, Bandung 40171, Indonesia
  • Department of Environmental Health, Faculty of Public Health, Universitas Airlangga, Airlangga Str. 4–6, Airlangga, Gubeng district, Surabaya City, East Java 60115, Indonesia
autor
  • Department of Environmental Health, Faculty of Public Health, Universitas Airlangga, Airlangga Str. 4–6, Airlangga, Gubeng district, Surabaya City, East Java 60115, Indonesia
  • Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bandar Baru Bangi street, Hulu Langat District, Selangor, 43600, Malaysia
  • Student of Doctoral Program of Environmental Sciences, Graduate School, Universitas Sebelas Maret, Ir Sutami street No. 36, Kentingan, Jebres district, Surakarta City, Central Java. 57126, Indonesia
Bibliografia
  • 1. Aditia, A. 2020. Pengolahan Air Limbah Menggunakan Bioreaktor Membran (BRM) (in Indonesia). J. Ilm. Maksitek, 5(4), 5–24.
  • 2. Afifah, A.S., Prajati, G., Adicita, Y., Darwin, D., Firmansyah, Y.W. 2021. Pemanfaatan Mikroalga dalam Penurunan Kadar Amonia dengan Variasi Penambahan Effective Microorganism (in Indonesia). J. Serambi Eng, 6(2), 1762–1767.
  • 3. Al-Khafaji, S.S., Al-Rekabi, W.S., Mawat, M.J. 2022. Apply Membrane Biological Reactor (MBR) in Industrial wastewater treatment: A Mini Review. Eurasian J. Eng. Technol, 7, 98–106.
  • 4. Asan, C., Gürel, L., Büyükgüngör, H. 2020. Batik Ultrafiltrasyon Membran Biyoreaktörü İle Gerçek Gri Su Aritimi. Konya J. Eng. Sci, 8(1), 103–112.
  • 5. Banaszak, J.E., Rittmann, B.E., Evans, J. 1998. Biotechnology for waste and wastewater treatment.. Environ. Prog, 17(1), S9–S10.
  • 6. Bani-Melhem, K., Smith, E. 2012. Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system. Chem. Eng. J, 198199, 201–210.
  • 7. Bodzek, M., Konieczny, K., Rajca, M. 2019. Membranes in water and wastewater disinfection – review. Arch. Environ. Prot, 45(1), 3–18.
  • 8. Chang, I.-S., Le Clech, P., Jefferson, B., Judd, S. 2002. Membrane Fouling in Membrane Bioreactors for Wastewater Treatment. J. Environ. Eng, 128(11), 1018–1029.
  • 9. Chu, H., Zhang, Y., Zhou, X., Zhao, Y., Dong, B., Zhang, H. 2014. Dynamic membrane bioreactor for wastewater treatment: Operation, critical flux, and dynamic membrane structure. J. Memb. Sci, 450, 265–271.
  • 10. Ding, A., Liang, H., Li, G., Derlon, N., Szivak, I., Morgenroth, E., Pronk, W. 2016. Impact of aeration shear stress on permeate flux and fouling layer properties in a low pressure membrane bioreactor for the treatment of grey water. J. Memb. Sci, 510, 382–390.
  • 11. Fernando, R.L.S. 2019. Solid waste management of local governments in the Western Province of Sri Lanka: An implementation analysis. Waste Manag, 84, 194–203.
  • 12. Fountoulakis, M.S., Markakis, N., Petousi, I., Manios, T. 2016. Single house on-site grey water treatment using a submerged membrane bioreactor for toilet flushing. Sci. Total Environ, 551–552, 706–711.
  • 13. Gede Wenten, I., Friatnasary, D.L., Khoiruddin, K., Setiadi, T., Boopathy, R. 2020. Extractive membrane bioreactor (EMBR): Recent advances and applications. Bioresour. Technol, 297, 122424.
  • 14. Gupta, N. 2018. White Matter Hyperintensity-Associated Blood-Brain Barrier Disruption and Vascular Risk Factors. J. Stroke Cerebrovasc. Dis, 27(2), 466–471.
  • 15. Gürel, L., Büyükgüngör, H. 2015. The Role of Mass Transfer in Membrane Systems. Pamukkale Univ. J. Eng. Sci, 21(6), 224–238.
  • 16. Hernaningsih, T. 2018. Aplikasi Membrane Bioreactor (MBR) Untuk Proses Daur Ulang Air Limbah (in Indonesia). J. Air Indones, 7(2), 109–118.
  • 17. Hocaoglu, S.M., Atasoy, E., Baban, A., Orhon, D. 2013. Modeling biodegradation characteristics of grey water in membrane bioreactor. J. Memb. Sci, 429, 139–146.
  • 18. Huang, S., Pooi, C.K., Shi, X., Varjani, S., Ng, H.Y. 2020. Performance and process simulation of membrane bioreactor (MBR) treating petrochemical wastewater. Sci. Total Environ, 747, 141311.
  • 19. Inc, M.E., Tchobanoglous, G., Burton, F.L., Tsuchihashi, R., Stensel, H.D. 2013. Wastewater Emgomeeromg: Treatment and Resource Recovery. Wastewater Eng, 2048.
  • 20. Judd, S., 2005. Fouling control in submerged membrane bioreactors. Water Sci. Technol., 51(6-7), 27–34.
  • 21. Judd, S. 2008. The status of membrane bioreactor technology. Trends Biotechnol, 26(2), 109–116.
  • 22. Kadim, H.A., Abd, A.N. 2022. Removing Pollutants From Wastewater Using An Advanced Method. Rev. Gestão Soc. e Ambient, 16(3), 1–11.
  • 23. Kim, J.-Y., Chang, I.-S., Shin, D.-H., Park, H.-H. 2008. Membrane fouling control through the change of the depth of a membrane module in a submerged membrane bioreactor for advanced wastewater treatment. Desalination, 231(1–3), 35–43.
  • 24. Ladewig, B., Al-Shaeli, M.N.Z. 2017. Fouling in Membrane Bioreactors, 39–85.
  • 25. Le-Clech, P., Chen, V., Fane, T.A.G. 2006. Fouling in membrane bioreactors used in wastewater treatment. J. Memb. Sci, 284(1–2), 17–53.
  • 26. Liao, Y., Bokhary, A., Maleki, E., Liao, B. 2018. A review of membrane fouling and its control in algal-related membrane processes. Bioresour. Technol, 264, 343–358.
  • 27. Liberman, N., Shandalov, S., Forgacs, C., Oron, G., Brenner, A. 2016. Use of MBR to sustain active biomass for treatment of low organic load grey water. Clean Technol. Environ. Policy, 18(4), 1219–1224.
  • 28. Luján-Facundo, M.J., Mendoza-Roca, J.A., Soler-Cabezas, J.L., Bes-Piá, A., Vincent-Vela, M.C., Pastor-Alcañiz, L. 2019. Use of the osmotic membrane bioreactor for the management of tannery wastewater using absorption liquid waste as draw solution. Process Saf. Environ. Prot, 131, 292–299.
  • 29. Mackenzie L. Davis P.E., DEE, P.D. 2010. Water and Wastewater Engineering: Design Principles and Practice, First edition. ed. McGraw-Hill Education, New York.
  • 30. Mohd Azoddein, A.A., Haris, H., Mohd Azli, F.A. 2015. Treatment of Palm Oil Mill Effluent (Pome) Using Membrane Bioreactor. Malaysian J. Anal. Sci, 19(3), 463–471.
  • 31. Nandari, W.W., Utami, A., Yogafanny, E., Kristiati, M.T. 2018. Pengolahan Air Terproduksi Dengan Membran Bioreaktor Di Wilayah Penambangan Wonocolo (in Indonesia). Eksergi, 15(3), 34.
  • 32. Osman, M. 2014.. Waste Water Treatment in Chemical Industries: The Concept and Current Technologies. J. Waste Water Treat. Anal, 5(1).
  • 33. Rodrigues, V., Wander, A., Rosa, F. 2023. Diagnosis of the Sustainability of a Poultry Value Chain from the Perspective of Environmental Management Accounting. Rev. Gest. Soc. e Ambient, 17(1), 1–20.
  • 34. Silva, L.L.S., Moreira, C.G., Curzio, B.A., da Fonseca, F. V. 2017. Micropollutant Removal from Water by Membrane and Advanced Oxidation Processes—A Review. J. Water Resour. Prot, 9(5), 411–431.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e455ed4a-313e-4d7e-846d-f2562751a205
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.