PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Spektroskopia elektronowa AES jako narzędzie analityczno-diagnostyczne w inżynierii materiałowej

Autorzy
Identyfikatory
Warianty tytułu
EN
AES electron spectroscopy as an analytical and diagnostic tool in materials science and engineering
Języki publikacji
PL
Abstrakty
PL
W niniejszej rozprawie wykazano przydatność metod analitycznych spektroskopii elektronowej oraz oscylacyjnej w kilku obszarach szeroko pojętego materiałoznawstwa, takich jak: kataliza, korozja oraz biofunkcjonalność wybranych materiałów metalowych. Szczególną uwagę poświęcono zagadnieniom związanym z chemicznymi i elektrochemicznymi metodami modyfikacji powierzchni materiałów funkcjonalnych. Wielostronną charakterystykę tego typu powierzchni otrzymano poprzez skojarzenie szeregu komplementarnych metod badawczych, takich jak mikroskopia elektronowa oraz zaawansowane spektroskopowe metody analizy powierzchni; spektroskopia AES oraz mikroanaliza Augera (SAM). Tego typu opis umożliwił zrozumienie mechanizmów zjawisk zachodzących na powierzchni materiałów funkcjonalnych, w kontekście ich potencjalnych zastosowań po celowej modyfikacji. Znalezione korelacje pomiędzy składem chemicznym, stanem chemicznym składników i morfologią powierzchni a strukturą wewnętrzną materiałów okazały się niejednokrotnie kluczowe dla opracowania skutecznych metod modyfikacji ich właściwości fizykochemicznych w pożądanym kierunku. Wykazano w szczególności wpływ: elektrochemicznej i chemicznej obróbki katalizatorów na bazie Cu lub Ni na ich aktywność oraz selektywność w reakcjach odwodornienia/uwodornienia związków organicznych, wyciskania hydrostatycznego na strukturę stali austenitycznych i trwałość ich stanu pasywnego w roztworach wodnych zawierających chlorki, pierwiastków stopowych - metali trudnotopliwych (Ta, Nb) na formowanie się na powierzchni amorficznych stopów Al warstw tlenkowych o charakterze ochronnym (antykorozyjnym), obróbek chemicznych i elektrochemicznych na poprawę biofunkcjonalności powierzchni Ti oraz na skuteczność wytwarzania aktywnych podłoży (TiO2 AI2O3) do badań adsorpcji molekuł organicznych metodą SERS. Niniejsza rozprawa stanowi podsumowanie dotychczasowego dorobku naukowego autora zawartego w publikacjach, w tym czterech pracach przeglądowych, [1, 2, 20-22, 29, 44,45, 50, 58-61, 78-81, 84, 88, 89, 101, 111-113, 116, 130, 131, 140, 142, 149, 155, 157, 158] opublikowanych w międzynarodowych i krajowych czasopismach naukowych oraz w materiałach konferencyjnych. Znaczną cześć pracy zrealizowano w ramach projektów badawczych sfinansowanych przez Ministerstwo Nauki i Szkolnictwa Wyższego oraz przez Narodowe Centrum Nauki (projekt realizowany obecnie). W rozdziale 2 rozprawy przedstawiono podstawy fizyczne spektroskopii AES z uwzględnieniem możliwości analityczno-diagnostycznych oraz ograniczeń tej metody w zastosowaniu do badań podstawowych z zakresu inżynierii materiałowej. W rozdziałach od 3 do 7 zamieszczono wyniki badań własnych autora, a ich podsumowanie - w rozdziale 8.
EN
This paper presents wide applicability of certain analytical methods, such as electron and vibrational spectroscopies, in a number of areas of materials science, like: catalysis, corrosion and bio-functionality of selected metal materials. Particular attention is paid to chemical and electrochemical methods of surface modification of functional materials. To obtain comprehensive characteristics of this type of surface, a combination of different complementary methods was applied: electron microscopy and advanced spectroscopic methods of surface analysis, including AES spectroscopy and SAM microanalysis. This type of description has enabled understanding of the mechanisms of the phenomena occurring on the surface after modification of functional materials, exerted upon them for the purpose of their intended applications. The correlation revealed between the chemical composition, chemical state of the components, surface morphology and the internal structure of these materials proved to be crucial for the elaboration of effective methods leading to intended modification of their physicochemical properties. In particular, evidence of the following correlations was given: impact of electrochemical and chemical pretreatment of catalysts based on Cu or Ni on their activity and selectivity for dehydrogenation/hydrogenation reactions of certain organic compounds, impact of hydrostatic extrusion on the internal structure of austenitic stainless steels and stability of their passive state in solutions containing chlorides, impact of refractory metals (Ta, Nb) as alloying elements in Al-based amorphous alloys on growing highly protective oxide layers (corrosion barrier) on their surface, impact of chemical and electrochemical treatment on: improving the biocompatibility of titanium surface and on upgrading fabrication of active substrates (TiO2, AI203) for the investigation of adsorption of organic molecules with the SERS method. The thesis summarizes the up-to-now scientific output of the author presented in the papers [1, 2, 20-22, 29, 44, 45, 50, 58-61, 78-81, 84, 88, 89, 101, 111-113, 116, 130, 131, 140, 142, 149, 155, 157, 158] as published in international and domestic scientific journals and conference proceedings. Besides, this scientific output of the author was briefly summarized in the supplement to this thesis. A significant part of the work was carried out in the framework of research projects funded by the Ministry of Science and Higher Education and by the National Science Centre (a currently realized project). Chapter 2 presents physical background of AES spectroscopy, including its analytical and diagnostic capabilities, as well as the limitations of the method when applied for fundamental research in the field of materials science. In Chapters 3 up to 7, the author's own research results are shown, while their summary is given in Chapter 8.
Rocznik
Tom
Strony
3--96
Opis fizyczny
Bibliogr. 174 poz., rys., tab., wykr.
Twórcy
autor
  • Instytut Chemii Fizycznej PAN, Mazowieckie Centrum Analizy Powierzchni
Bibliografia
  • [1] M. Pisarek, M. Łukaszewski, M. Janik-Czachor, Auger Electron Spectroscopy for Materials Science: Examples of Applications, Polish Journal of Chemistry, 83 (2009), 1393-1412
  • [2] M. Janik-Czachor, M. Pisarek, Electrochemical, Microscopic and Surface Analytical Studies of Amorphous and Nan crystalline Alloys, Progress in Corrosion Science and Engineering I, in Modern Aspects of Electrochemistry, Su-II Pyun, Jong-Won Lee (eds.), vol. 46 (2009), 175-230
  • [3] E. Łągiewka, A. Budniok, Struktura, właściwości i metody badań materiałów otrzymanych elektrolitycznie, Wydawnictwo Uniwersytetu Śląskiego, Katowice 2010
  • [4] S. Mróz, Spektroskopia elektronów Augera, Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław 1992
  • [5] D. Briggs, J.T. Gram, Surface Analysis by Auger and X-ray photoelectron Spectroscopy, IM Publications, 2003
  • [6] J.F. Watts, J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES, John Wiley&Sons Ltd., 2003, England
  • [7] O. Ertl and J. Kueppers, Low Energy Electrons and Surface Chemistry. § 2, p. 17-64. Weinheim: VCH, 1985
  • [8] S. Mróz, Experimental determination of the composition depth profile of AuCu alloys via Auger Electron Spectroscopy, Progress in Surface Science, vol. 59, No 1-4 (1998), 323-330
  • [9] C.J. Powell, A. Jabłoński, Evaluation of calculated and measured electron inelastic mean free path near solid surfaces, Journal of Physical and Chemical Reference Data, vol. 28, No. 1 (1999), 19-62
  • [10] M.P. Seah, W. A. Dench, Quantitative Electron Spectroscopy of Surfaces: A Standard Data Base for Electron Inelastic Mean Free Paths in Solids, Surface Interface Analalysis, 1 (1979), 2-11
  • [11] M. Krawczyk, L. Zommer, A. Jabłoński, 1. Grzegorz, M. Bockowski, Energy dependence of electron inelastic mean free paths in bulk GaN crystals, Surface Science 566-568 (2004), 1234-1239
  • [12] S. Mróz, A. Mróz, Auger elektron Spectroscopy in the investigation of ultra thin films in molecular beam epitaxy, Thin Solid Films, 367 (2000), 126-133
  • [13] C.J. Powell, A. Jabłoński, W.S.M. Werner, W. Smekal, Characterization of thin films on the nanometer scale by Auger electron Spectroscopy and X-ray Spectroscopy, Applied Surface Science 239 (2005), 470-480
  • [14] A. Jabłoński, Remarks on the definition of the backscattering factor in AES, Surface Science, 499 (2002), 219-228
  • [15] M.P. Seach, Quantitative AES and XPS: convergence between theory and experimental data-basic, Journal or Electron Spectroscopy and Related Phenomena, 100 (1999), 55-73
  • [16] Redakcja naukowa: K. J. Kurzydłowski, M. Lewandowska, Nanomateriały inżynierskie - konstrukcyjne i funkcjonalne, Wydawnictwo Naukowe PWN, Warszawa 2010
  • [17] J.W. Niemantsverdriet, Spectroscopy in Catalysis, Wiley-VCH Verlag GmbH&Co., KGaA, Weinheim 2007
  • [18] S. Hofmann, Quantitative Auger electron Spectroscopy in thin film depth profiling, Vacuum vol. 48, No 7-9 (1997), 607-612
  • [19] E. Reniers, E. Silberberg, N. Roose, J. Vereecken, Study of the chemical bonding in tungsten carbide and chromium films by application of factor analysis on AES depth profiles, Applied Surface Science 99 (1996), 379-392
  • [20] M. Pisarek, Characterization of metallic oxide thin-layer materials by Auger Electron Spectroscopy (AES) combined with Ar+ ion etching, Annales de Chimie Science des Materiaux, 32 (4) (2007), 383-394
  • [21] M. Pisarek, P. Kędzierzawski, T. Płociński, M. Janik-Czachor, K.J. Kurzydłowski, Characterization of the effects of hydrostatic extrusion on grain size, surface composition and the corrosion resistance of austenitic stainless steels, Materials Characterization 59 (2008), 1292-1300
  • [22] Z. Werner, A. Jaskiewicz, M. Pisarek, M. Janik-Czachor, M. Barlak, AES and RBS characterization of anodic oxide films on AI-Ta amorphous alloys, Zeitschrift fur Physikalische Chemie, 219 (2005), 1461-1479
  • [23] A. Jaskiewicz, Trwałość stanu pasywnego i budowa tlenkowych warstw anodowych tworzących się na stopach amorficznych aluminium-tantal i aluminium-niob, Rozprawa doktorska. Politechnika Warszawska, Wydział inżynierii Materiałowej, Warszawa 2007
  • [24] A. Cygański, Metody spektroskopowe w chemii analitycznej, WNT, Warszawa 1997
  • [25] F.C. Tompkins, Chemisorpcja gazów na metalach, PWN, Warszawa 1985
  • [26] Manual - Microlab 350, Issue 2 (06/03), Thermo Electron Corporation - Scientific Instrument Division
  • [27] P.J. Cumpson, Angle resolved XPS and AES: depth-resolution limits and a general composition of properties of depth profile reconstruction methods, Journal of Electron Spectroscopy and Related Phenomena 73 (1995), 25-52
  • [28] C.P. Hunt, T. Anthony, M.P. Seah, AES and XPS depth profiling certified reference material, Surf. Interface. Anal., vol. 6 (2) (1984), 92
  • [29] H. Garbacz, M. Pisarek, K.J. Kurzydłowski, Corrosion resistance of nanostructured titanium, Biomolecular Engineering, 24 (2007), 559-563
  • [30] Praca zbiorowa pod red. A. Szummera, Podstawy ilościowej analizy rentgenowskiej, WNT, Warszawa 1994
  • [31] Handbook of Auger Electron Spectroscopy: A Book of Reference Data for Identification and Interpretation in Auger Electron Spectroscopy Data, Third Edition, Edited by CL. Hedberg, Physical Electronics Inc., 1995, USA
  • [32] Handbook of Auger Electron Spectroscopy: A Reference Book of Standard Data for Identification and Interpretation of Auger Electron Spectroscopy Data, Second Edition by L.E. Davis et all, Physical Electronics Industries, Inc., 1976, USA
  • [33] J.-M. Guglielmacci, B. Ealet, Determination of aluminum surface composition by Auger electron Spectroscopy, Materials Science Engineering B40 (1996), 96-99
  • [34] R. Zallen, Fizyka ciał amorficznych, PWN, Warszawa 1994
  • [35] A. Baiker, Glassy Metals III. Amorphisation Techniques, Catalysis, Electron and Ionic Structure, Editor. H. Beck, H.-J. Guntherodt, 1994, Springer-Verlag, Berlin Heidelberg, p. 121
  • [36] G.A. Sornorjai, Active Sites in Heterogeneous Catalysis, Advances Catalysis, 26(1977), 1-68
  • [37] A. Molnar, Catalytic applications of amorphous alloys: Expectations, achievements, and disappointments, Applied Surface Science, 257 (19) (2011), 8150
  • [38] A. Baiker, Metallic Glasses in Heterogeneous Catalysis, Faraday Discuss. Chem. Soc., 87 (1989), 239-251
  • [39] K. Hashimoto, Recent advances in the catalytic properties of metastable materials. Materials Science and Engineering, A226-228 (1999), 891-899
  • [40] A. Szummer, M, Varga, M. Dolata, A. Molnar, M. Janik-Czachor, Effect of electrochemical pretreatment on catalytic activity of Cu-Zr amorphous alloys, Materials Chemistry and Physics, 1998, 57, p. 186-189
  • [41] J.-F. Deng. H. Li, W. Wang, Progress in design of new amorphous alloy catalysts, Catalysis Today 51 (1999), 113-125
  • [42] A. Szummer, M. Janik-Czachor, A. Molnar, I. Marchuk, M. Varga, S.M. Filipek, Effect of hydrogen under high pressure on the structure and catalytic properties of Cu-Zr amorphous alloys, Journal of Molecular Catalysis A: Chemical, 176(2001), 205-212
  • [43] M. Varga, A. Molnar, A. Mohai, I. Bartoti, M. Janik-Czachor, A. Szummer, Selective hydrogenation of pentynes over PdZr and PdCuZr prepared from amorphous precursors, Applied Catalysis A: General, 234 (2002), 67-178
  • [44] M. Pisarek, M. Janik-Czachor, Microstructural and Auger Microanalytical Characterization of Cu-Hf and Cu-Ti Catalysts, Microscopy and Microanalysis, 12 (2006), 228-237
  • [45] M. Janik-Czachor, M. Pisarek, A. Molnar, Activation of Cu-based amorphous alloys ribbons for catalytic applications, ECS Transaction, 1(4), (2006), 479
  • [46] G.A. Somorjai, Chemistry in Two Dimensions, Surfaces, Cornell University Press, Ithaca, 1981
  • [47] G.C. Pimentel, J.A. Coonrod, Chemia dziś i jutro, PWN, Warszawa 1993
  • [48] J. Barcicki, Podstawy katalizy heterogenicznej. Wydawnictwo UMCS, Lublin 1998
  • [49] Praca zbiorowa. Kataliza i katalizatory. Państwowe Wydawnictwo Techniczne, Warszawa 1952
  • [50] M. Pisarek, M. Łukaszewski, P. Winiarek, P. Kędzierzawski, M. Janik-Czachor, Catalytic activity of Cr or Co modified Ni-based rapidly quenched alloys in the hydrogenation of isophorone, Applied Catalysis A, 358 (2009), 240-248
  • [51] B. Grzybowska-Świerkosz, Elementy katalizy heterogenicznej, PWN, Warszawa 1992
  • [52] M. Ziółek, I. Nowak, Kataliza heterogeniczna. Wybrane zagadnienia, Wydawnictwo UAM, Poznań 1999
  • [53] H.-J. Freund, M. Baumer, H. Kuhlenbeck, What do we learn from studies of oxide-supported cluster model system? Advances in Catalysis, 45 (2000), 334-384
  • [54] G.C. Bond, Kataliza heterogeniczna. Podstawy i zastosowania, PWN, Warszawa 1979
  • [55] W. Romanowski, Makrocząsteczki i clustery metaliczne w katalizie, PWN, Warszawa-Wrocław 1983
  • [56] J D. Such, P. Asoka-Kumar, R.H. Daukskardt, The effect of hydrogen on viscoelastic relaxation in Zr-Ti-Ni-Cu-Be bulk metallic glasses: implication for hydrogen embrittlement, Acta Materialia, 50 (2002), 537-551
  • [57] M. Bartok, Stereochemistry of Heterogeneous Metal Catalysis, 1999, A. Wiley-Interscience Publication, p. 297
  • [58] M. Pisarek, M. Janik-Czachor, A. Molnar, K. Hughes, Catalytic activity of Cu-based amorphous alloy ribbons modified by cathodic hydrogen charging, Applied Catalysis A, 283 (2005), p. 177-184
  • [59] M. Pisarek, M. Łukaszewski, P. Winiarek, P. Kedzierzawski, M. Janik-Czachor, Influence of Cr addition to Raney Ni catalyst on hydrogenation of isophorone, Catalysis Communications, 10 (2008), 213-216
  • [60] M. Pisarek, M. Łukaszewski, P. Winiarek, P. Kedzierzawski, M. Janik-Czachor, Selective catalytic hydrogenation of isophorone on Ni-AI alloy modified with Cr, Materials Chemistry and Physics, 114 (2009), 774-779
  • [61] M. Pisarek, M. Janik-Czachor, T. Płociński, M. Łukaszewski, Characterization of catalysts obtained from rapidly quenched alloy precursors by electrochemical/chemical processes of material degradation-selected examples, Journal of Materials Science: 44 (2009), 5701-5712
  • [62] B. Zeifert, J. Salmone Blasquez, J. Gerardo Cabanas Moreno, H.A. Calderon, Raney-nickel catalysts produced by mechanical alloying, Reviews on Advanced Materials Science, 18 (2008), 632-638
  • [63] H.F. Zhang, A- M. Wang, H. Li, Q.H. Song, B. Z. Ding, Z.Q. Hu, Microstructure and catalytic properties of rapidly quenched Ni-AI-Cr-Fe alloy, Materials Letters 48 (2001), 347-350
  • [64] F. Hochard-Poncet, P. Delichere, B. Moraweck, H. Jobic, A.J. Renouprez, Surface Composition, Structural and Chemisorptive Properties of Raney Nickel Catalysts, Journal of the Chemical Society, FARADAY TRANS, 91(17) (1995), 2891-2897
  • [65] M.C. Cadeville, J. Roussel, Thermoelectric power and electronic structure of dilute alloys of nickel and cobalt with a transition elements, Journal of Physics F: Metal Physics, l (1971), 686
  • [66] J S.M. Filipek, The Influence of Hydrogen on the Thermoelectric Power of Palladium Based and Nickel Based Alloys", Zeitschrift für Physikalische Chemie N.F., 163 (1989), 627
  • [67] S.M. Filipek, Ni-Cr-H systems studied under high hydrogen pressure, Zeitschrift für Physikalische Chemie N.F., 163 (1989), 485
  • [68] S.M. Filipek, Thermoelectric Power of (NiMn)-H and (NiCo)-H Systems, Polish Journal of Chemistry, 71 (1997), 1777-1786
  • [69] M. Fleishmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chemical Physical Letters, 26 (1974), 163
  • [70] D.L. Jeanmaire, R.P. Van Duyne, Surface raman spectroelectrochemistry: Part 1. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, Journal of Electroanalytical Chemistry, 84 (1977), 1
  • [71] M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, Journal of the American Chemical Society, 99 (1977), 5215
  • [72] S.G. Schultz, M. Janik-Czachor, R.P. Van Duyne, Surface enhanced Raman spectroscopy: A re-examination of the role of surface roughness and electrochemical anodization, Surface Science, 104 (1981), 419-434
  • [73] A. Kudelski, J. Bukowska, Powierzchniowo wzmocnione rozproszenie ramanowskie (SERS). Problemy eksperymentalne. Modele teoretyczne. Zastosowania, Wiadomości chemiczne, 47 (1993), 641
  • [74] M. Janik-Czachor, Zastosowanie ramanowskiego rozproszenia światła do badania in situ granicy faz metal/elektrolit, Wiadomości chemiczne, 36(1982), 477
  • [75] A. Kudelski, Raman spectroscopy of surfaces, Surface Science, 603 (2009), 1328-1334
  • [76] J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 nanotubes: Self-organized electrochemical formation, properties and applications, Current Opinion in Solid State and Materials Science 11 (2007), 3
  • [77] J. Zhao, X. Wang, R. Chen, L. Li, Fabrication of titanium oxide nanotube arrays by anodic oxidation, Solid State Communications, 134 (2005), 705
  • [78] M. Pisarek, A. Roguska, M. Andrzejczuk, Charakterystyka nanoporowatych warstw na Ti jako perspektywicznych podłoży dla zastosowań biomedycznych, Inżynieria Materiałowa Nr 2 (180) (2011), 71-76
  • [79] A. Roguska, A. Kudelski, M. Pisarek, M. Lewandowska, M. Dolata, M. Janik-Czachor, Raman investigations of TiO, nanotube substrates covered with thin Ag or Cu deposits, Journal of Raman Spectroscopy, 40(11) (2009), 1652-1656
  • [80] A. Roguska, A. Kudelski, M. Pisarek, M. Opara, M. Janik-Czachor, Raman investigations of SERS activity of Ag nanoclusters on a TiO2-nanotubes/Ti substrate, Vibrational Spectroscopy, 55 (1) (2011), 38-43
  • [81] A. Roguska, A. Kudelski, M. Pisarek, M. Opara, M. Janik-Czachor, Surface-enhanced Raman scattering (SERS) activity of Ag, Au and Cu nanoclusters on TiO-nanotubes/Ti substrate, Applied Surface Science, 257 (19) (2011), 8181-8188
  • [83] H. Tsuchiya, S. Berger, J.M. Macak, A.G. Munoz, P. Schmuki, A new route for the formation of self-organized anodic porous alumina in neutral electrolytes, Electrochemistry Communications, 9 (2007), 545-550
  • [82] G.D. Sulka, L. Zaraska, W.J. Stępniowski, Anodic porous alumina as a template for nanofabrication, in: Encyclopaedia of Nanoscience and Nanotechnology 2nd Edition, H.S. Nalwa (ed.), American Scientific Publishers 2011, vol. 11, pp. 261-349
  • [84] A. Roguska, M. Pisarek, A. Kudelski, M. Lewandowska, K.J. Kurzydłowski, M. Janik-Czachor, Raman investigations of Adsorbate-Substrate Interactions on Composite Ag (or Cu)/TiO Nanotubes/Ti Substrates, WDS'09 Proceedings of Contributed Papers, Part III, 136-141, MATFYZPRESS, 2009
  • [85] Praca zbiorowa pod red. M. Najbara, Fizykochemiczne metody badań katalizatorów kontaktowych, Wydawnictwo UJ, Kraków 2000
  • [86] A. Roguska, M. Pisarek, M. Andrzejczuk, M. Lewandowska, KJ. Kurzydłowski, M. Janik-Czachor, Surface characterization of Ca-P/Ag/TiO2 nanotube composite layers on Ti intended for biomedical applications, Journal of Biomedical Materials Research Part A, 100A (8) (2012), 1954-1962
  • [87] A. Roguska, A. Belcarz, T. Piersiak, M. Pisarek, G. Ginalska, M. Lewandowska, Evaluation of the Antibacterial Activity of Ag-loaded TiO; Nanotubes, European Journal of Inorganic Chemistry, 2012 (2012), 5199-5206
  • [88] M. Pisarek, A. Roguska, A. Kudelski, M. Andrzejczuk, M. Janik-Czachor, K.J. Kurzydłowski, The role of Ag particles deposited on TiO2 or AlO, self-organized nanoporous layers in their behavior as SERS-active and biomedical substrates, Materials Chemistry and Physics 139 (2013) 55-65
  • [89] A. Kudelski, M. Pisarek, A. Roguska, M. Hołdyński, M. Janik-Czachor, Surface-enhanced Raman scattering investigations on silver nanoparticles deposited on alumina and titania nanotubes: influence of the substrate material on surface-enhanced Raman scattering activity of Ag nanoparticles, Journal of Raman Spectroscopy 43 (2012), 1360-1366
  • [90] Korozja, tom I (Korozja metali i stopów) pod red. L.L. Shreira, Wydawnictwo Naukowo-Techniczne. Warszawa 1966
  • [91] E.McCafferty, J.P. Wightman, An X-ray photoelectron Spectroscopy sputter profile study of the native air-formed oxide film on titanium, Applied Surface Science, 143 (1999), 92-100
  • [92] C.O.A. Olsson, D. Landolt, Passive films on stainless steels - chemistry, structure and growth, Electrochimica Acta 48(2003), 1093-1104
  • [93] G. Bhargava, I. Gouzman, C.M. Chun, T.A. Ramanarayanan, S.L.Bernasek, Characterization of the native surface thin film on pure polycrystalline iron. A high resolution XPS and TEM study, Applied Surface Science, 253 (2007), 4322-4329
  • [94] P. Marcus, On some fundamental factors in the effect of alloying elements on passivation of alloys, Corrosion Science, 36 (1994), 2155-2158
  • [95] A. Wołowik, M. Janik-Czachor, Anodic behavior of Al-refractory metal amorphous alloys, Materials Science and Engineering A, 267 (1999), 301-306
  • [96] A. Wołowik, M. Janik-Czachor, Z. Wener, Stability of the passive state of Al-W sputter deposited amorphous alloys, Materials Chemistry and Physics, 49 (1997), 164-168
  • [97] M. Janik-Czachor, A. Jaśkiewicz, P. Kędzierzawski, Z. Werner, Stability of the passive state of AI-Ta and Al-Nb amorphous alloys, Materials and Engineering A, 358 (2003), 171-177
  • [98] K. Hashimoto, K. Asami, A. Kawashima, H. Habazaki, E. Akiyama, The role of corrosion-resistant alloying elements in passivity, Corrosion Science, 49 (2007), 42-52
  • [99] M. Janik-Czachor, A. Jaśkiewicz, M. Dolata, Z. Werner, Passivity and its breakdown in Al-based amorphous alloys, Materials Chemistry and Physics, 92 (2005), 348-353
  • [100] I. Milosev, M. Metikos-Hukovic, H.-H. Strehblow, Passive film on orthopedic TiAIV alloy formed in physiological solution investigated by X-ray photoelectron Spectroscopy, Biomaterials, 21 (2000), 2103-2113
  • [101] M. Lewandowska, M. Pisarek, K. Rożniatowski, M. Grądzka-Dahlke, M. Janik-Czachor, K.J. Kurzydłowski, Nanoscale characterization of anodic oxide films on Ti-6AI-4V alloy, Thin Solid Films, 515 (2007), 6460-6464
  • [102] Praca zbiorowa pod red. M. Nałęcza, Biocybernetyka i inżynieria biomedyczna 2000, tom 4 - Biomateriały (red. S. Błażewicz, L. Stoch), Akademicka Oficyna Wydawnicza Exit, Warszawa 2003
  • [103] J. Marciniak, Z. Paszenda, Biotolerancja biomateriałów metalicznych, w „Spondyloimplantologia zaawansowanego leczenia kręgosłupa systemem DER O", red. L.F. Ciupik, D. Zarzycki. Zielona Góra: Polska Grupa DERO - Stowarzyszenie Studiów i Badań Kręgosłupa, 2005, pp. 133-142
  • [104] L.E. Fratila-Apachitei, H. Terryn, P. Skeldon, G.E. Thompson, J. Duszczyk, L. Katgerman, Influence of substrate microstructure on the growth of anodic oxide layers, Electrochemical Ada, 49 (2004), 1127-1140
  • [105] E. Krasicka-Cydzik, I. Głazowska, Elektrochemiczna metoda formowania bioaktywnych warstw na tytanie i jego stopach, w „Spondyloirnplantologia zaawansowanego leczenia kręgosłupa systemem DERO", red. L.F. Ciupik, D. Zarzycki. Zielona Góra: Polska Grupa DERO - Stowarzyszenie Studiów i Badań Kręgosłupa, 2005, pp. 115-121
  • [106] A.F. Yetim, Investigation of wear behavior of titanium oxide films, produced by anodic oxidation, on commercially pure titanium in vacuum conditions, Surface Coatings and Technology, 205(2010), 1757-1763
  • [107] R.Z. Valiev, R.K. Islamgaliev, LV. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, 45 (2000), 103-189
  • [108] M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, The use of severe plastic deformation for microstructural control, Materials Science and Engineering A, 324 (2002), 82-89
  • [109] K.J. Kurzydłowski, Microstructural refinement and properties of metals processed by severe plastic deformation, Bulletin of the Polish Academy of Sciences Technical Sciences, 52(4) (2004), 301-11
  • [110] M. Lewandowska, Kształtowanie mikrostruktury i właściwości stopów aluminium metodą wyciskania hydrostatycznego, Prace naukowe Politechniki Warszawskiej, Inżynieria Materiałowa, Oficyna Wydawnicza PW, Warszawa 2006
  • [111] M. Pisarek, P. Kędzierzawski, M. Janik-Czachor, K.J. Kurzydłowski, The effect of hydrostatic extrusion on resistance of 316 austenitic stainless steel to pit nucleation, Electrochemistry Communications, 9 (2007), 2463-2466
  • [112] M. Pisarek, P. Kędzierzawski, M. Janik-Czachor, K.J. Kurzydłowski, The Effect of Hydrostatic Extrusion on the Corrosion Resistance of 316 Stainless Steel, Corrosion NACE vol. 64, No. 2 (2008), 131-137
  • [113] M. Pisarek, P. Kędzierzawski, T. Płociński, M. Janik-Czachor, K.J. Kurzydłowski, Characterization of the Effects of Hydrostatic Extrusion on Grain Size, Surface Composition and the Corrosion Resistance of Austenitic Stainless Steels, Materials Characterization, 59 (9) (2008), 1292-1300
  • [114] D. Klassek, T.Suter, P. Schmutz, W. Pachla, M. Lewandowska, K.J. Kurzydłowski, O. von Trzebiatowski, The role of inclusions in the corrosion resistance of hydrostatically extruded steel products, Solid State Phenomena, 114(2006), 189-95
  • [115] Z. Zhang, E. Akiyama, Y. Watanabe, Y. Katada, K. Tsuzaki, Effect of a-Al/A13Ni microstructure on the corrosion behavior of Al-5.4 wt.% Ni alloy fabricated by equal-channel angular pressing, Corrosion Science, 49 (2007), 2962-2972
  • [116] M. Pisarek, P. Kędzierzawski, M. Janik-Czachor, K.J. Kurzydłowski, Effect of Hydrostatic Extrusion on Passivity Breakdown on 303 Austenitic Stainless Steel in Chloride Solution, Journal of Solid State Electrochemistry (Special Issue EMRS 2007), 13 (2009), 283-291
  • [117] Praca pod redakcją R.R Frankenthal, J. Kruger, Passivity of Metals, Princeton, New Jersey: The Electrochemical Society, INC.; 1978, 646-667
  • [118] W.R Yang, D. Costa, P. Marcus, Chemical composition, chemical stales, and resistance to localized corrosion of passive films on an Fe-17%Cr alloy, Journal of the Electrochemical Society, 141(1) (1994), 111-116
  • [119] S. Virtanen, H. Bohni, On the stability of passive film on stainless steel, Materials Science Forum, 185-188 (1995), 965-974
  • [120] A. Kocijan, C. Donik, M. Jenko, Electrochemical and XPS studies of the passive film formed on stainless steels in borate buffer and chloride solutions, Corrosion Science, 49 (2007), 2083-2098
  • [121] R. Kirchheim, Growth kinetics of passive films, Electrochemical Acta, 32(11) (1987), 1619-1629
  • [122] A. Szummer, M. Janik-Czachor, S. Hofmann, Passivity of non-metallic inclusions in stainless steels and their effect on resistance against pitting. Materiały konferencyjne „Modifications of Passive Films: (EFC 12)", Maney Publishing, 1994, 280-288
  • [123] P. Schmuki, H. Hildebrant, A. Friedrich, S. Virtanen, The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion, Corrosion Science, 47 (2005), 1239-1250
  • [124] A. Rossi, B. Elsener, G. Hahner, N.D. Spencer, XPS, AES and ToF-SIMS investigation of surface films and the role of inclusions on pitting corrosion in austenitic stainless steels, Surface and Interface Analysis, 29 (2000), 460-467
  • [125] T. Wierzchoń, E. Czarnowska, D. Krupa, Inżynieria powierzchni w wytwarzaniu biomateriałów tytanowych, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2004
  • [126] M. Jurczyk, J. Jakubowicz, Bionanomateriały, Wydawnictwo Politechniki Poznańskiej, Poznań 2008
  • [127] M. Wei, H.-M. Kim, T. Kokubo, J.H. Evans, Optimizing the bioactivity of alkaline-treated titanium alloy, Materials Science and Engineering C, 20 (2002), 125-134
  • [128] T. Hanawa, In vivo metallic biomaterials and surface modification, Materials Science and Engineering A, 267 (1999), 260-266
  • [129] B. Yang, M. Uchida, H.-M Kim, X. Zhang, T. Kokubo, Preparation of bioactive titanium metal via anodic oxidation treatment, Biomaterials, 25 (2004), 1003-1010
  • [130] M. Pisarek, M. Lewandowska, A. Roguska, K.J. Kurzydłowski, M. Janik-Czachor, SEM, Scanning Auger and XPS characterization of chemically preteated Ti surfaces intendent for biomedical applications, Materials Chemistry and Physics, 104 (2007), 93-97
  • [131| M. Lewandowska, A. Roguska, M. Pisarek, B. Polak, M. Janik-Czachor, K.J. Kurzydłowski, Morphology and chemical characterization of Ti surfaces modified for biomedical applications, Biomolecular Engineering, 24 (2007), 438-442
  • [132] L. Jonasova, F.A. Muller, A. Helebrant, J. Strand, P. Greil, Biomimetic apatite formation on chemically treated titanium, Biomaterials, 25 (2004), 1187-1194
  • [133] Ji-H. Park, Y.-K. Lee, K.-M. Kim, K.-N. Kim, Bioactive calcium phosphate prepared on H2O2-treated titanium substrate by electrodeposition, Surface Coatings and Technology, 195 (2005), 252-257
  • [134] W. Mróz, M. Bućko, S. Burdyńska, J. Czwartos, A. Prokopiuk, A. Ślósarczyk, T. Wierzchoń, Influence on manganese on the structure and morphology of hydroxyapatite coatings deposited using pulsed laser deposition technique, Inżynieria Materiałowa, Nr 4 (182) (2011), 608-611
  • [135] J. Wang, P. Layrolle, M. Stigter, K. de Groot, Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment, Biomaterials, 25 (2004), 583-592
  • [136] T. Truszkowski, A. Zajączkowska, B. Rajchel, E. Czarnowska, T. Wierzchoń, Wpływ impiantacji jonów wapnia na właściwości dyfuzyjnej warstwy Ti3P wytworzonej na stopie tytanu Ti6AI4V, Inżynieria Materiałowa Nr 5(171) (2009), 392-395
  • [137] K. Cai, J. Bossert, K.D. Jandt, Does the nanometer scale topography of titanium influence on protein adsorption and cell proliferation? Colloids Surfaces B: Biointerfaces, 49 (2006), 136-214
  • [138] J X. Zhu, J. Chen, L. Scheidcler, R. Reichl, J. Geis-Gerstorfer, Effects of topography and composition of titanium surface oxides on osteoblast responses, Biomaterials, 25 (2004), 4087-4103
  • [139] L. Ponsonnet, K. Reybier, N. Jaffrezic, V. Comte, C. Lagneau, M. Lissac, C. Martelet, Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behavior, Materials Science Engineering C, 23 (2003), 551-560
  • [140] M. Lewandowska, M. Włodkowska, R. Olkowski, A. Roguska, B. Polak, M. Pisarek, M. Lewandowska-Szumiel, K.J. Kurzydłowski, Chemical Surface Modifications of Titanium Implants, Macromolecular Symposia, 253 (2007), 115-121
  • [141] B.-H. Lee, Y.D. Kim, K.H. Lee: XPS study of bioactive graded layer in Ti-In-Nb-Ta alloy prepared by alkali and heat treatments, Biomaterials, 24 (2003), 2257-2266
  • [142] M. Pisarek, A. Roguska, M. Andrzejczuk, L. Marcon, S. Szunerits, M. Lewandowska, M. Janik-Czachor, Effect of two-step functionalization of Ti by chemical processes on protein adsorption, Applied Surface Science, 257(2011), 8196-8204
  • [143] Y. Chen, Chi-Y Lee, M-Y. Yeng, H.T. Chin: Preparing titanium oxide with various morphologies, Materials Chemistry and Physics, 81 (2003), 39-43
  • [144] H. Takadama, H.-M. Kim, T. Kokubo, T. Nakamura: XPS study of the process of apatite formation on bioactive Ti-6Al-4V alloy in simulated body fluid, Science and Technology of Advance Materials, 2 (2001), 389-396
  • [145] J M. Vallet-Regi, J.M. Gonzalez-Callet: Calcium phosphates as substitution of bone tissues, Progres in Solid State Chemistry, 32 (2004), 1-31
  • [146] S. Kaneco, Y. Chen, P. Westerhoff, J.C. Crittenden, Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions, Scripta Materialia, 56 (2007), 373
  • [147] J.M. Macak, H. Hildebrand, U. Marten-Jahns, P. Schmuki, Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes, Journal of Electroanalytical Chemistry, 621 (2008), 254
  • [148] E. Krasicka-Cydzik, K. Kowalski, A. Kaczmarek, Anodic and nanostructural layers on titanium and its alloys for medical applications, Inżynieria Materiałowa, Nr (5) 171 (2009), 425
  • [149] A. Roguska, M. Pisarek, M. Andrzejczuk, M. Dolała, M. Lewandowska, M. Janik-Czachor, Characterization of a calcium phosphate -1 K) nanotube composite layer for biomedical applications, Materials Science and Engineering C. Materials for Biological Applications, 31 (2011), 906-914
  • [150] A. Pittrof, S. Bauer, P. Schmuki, Micropatterned TiO, nanotube surfaces for site-selective nucleation of hydroxyapatite from simulated body fluid, Acta Biomaterialia, 7(2011), 424-431
  • [151] A. Kar, K.S. Raja, M. Misra: Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications, Surface Coating and Technology 201 (2006), 3723-3731
  • [152] B. Feng, J. Weng, B.C. Yang, S.X. Qu, X.D. Zhang, Characterization of surface oxide films on titanium and adhesion of osteoblast, Biomaterials 24 (2003), 4663
  • [153] B. Kasemo, Biocompatibility of titanium implants: surface science aspects, The Journal of Prosthetic Dentistry, 49 (1983), 832
  • [154] J. Twardowski, Spektroskopia Ramana i podczerwieni w biologii, Państwowe Wydawnictwo Naukowe, Warszawa 1988
  • [155| A. Roguska, S. Hiromoto, A. Yamamoto, M. J. Woźniak, M. Pisarek, M. Lewandowska, Collagen immobilization on 316L stainless steel surface with cathodic deposition of calcium phosphate, Applied Surface Science, 257 (20H), 5037-5045
  • [156] P.J. ter Brugge, S. Dieudonne, J.A. Jansen, Initial interaction of U20S cells with non-coated and calcium phosphate coated titanium substrates, Journal of Biomedical Materials Research A6I (2002), 399-407
  • [157] M. Pisarek, A. Roguska, L. Marcon, M. Andrzejczuk, Wytwarzanie biomimetycznych powłok Ca-P na Ti metodami chemicznymi/elektrochemicznymi z roztworu Hanka, Inżynieria Biomateriałów 113 (2012), 29-32
  • [158| M. Pisarek, A. Roguska, L. Marcon, M. Andrzejczuk, Biomimetic and electrodeposited calcium-phosphates coatings on Ti - formation, surface Characterization, biological response w „Biomedical Engineering I", rozdział I, Wydawnictwo INTECH, 2012,1-44
  • [159] E. Krasicka-Cydzik, I. Głazowiska, A. Kaczmarek, K. Bialas-Heltowski, Wpływ szybkości narastania potencjału na proces anodowego formowania nanorurek TiO2, Inżynieria Biomateriałów, 77-80 (2008), 48
  • [160] A. Jaroenworaluck, D. Regonini, C.R. Bowen, R. Stevens, A microscopy study of the effect of heat treatment on the structure and properties of anodized TIO3 nanotubes. Applied Surface Science, 256 (2010), 2672
  • [161] J. Yu, B. Wang, Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays, Applied Catalysis B: Environmental, 94 (2010), 295
  • [162] H. Wang, N. Eliaz, LW. Hobbs, The nanostructure of an electrochemically hydroxyapatite coating. Materials Letters, 65 (2011), 2455-2457
  • [163] H.B. Lu, C.T. Campbell, D. J. Graham, B.D. Ratner, Surface Characterization of hydroxyapatite and related calcium phosphates by XPS and TOF-SIMS, Analytical Chemistry, 72 (2000), 2886-2894
  • [164] S.V. Dorozhkin, Calcium orthophosphates, Journal of Materials Science, 42 (2007), 1061-1095
  • [165] A. Stoch, W. Jastrzębski, A. Brożek, B.Trybalska, M. Ciechocińska, E. Szarawara. FTlR monitoring of the growth of carbonate containing apatite layers from simulated and natural body fluids, Journal of Molecular Structure, 511-512 (1999), 287-294
  • [166] L. Muller, E. Conforto, D. Caillard, F.A. Muller, Biomimetic apatite coatings carbonate substitution and preferred growth orientation, Bimolecular Engineering, 24 (2007), 462-466
  • [167] M. Janik-Czachor, H. Viefhaus, Passivity of Fe-Ni Base Metal-Metalloid Glasses, Journal of Electrochemical Society, 136 (1989). 2481-2485
  • [168] S.R. Paital, N.B. Dahorte, Calcium phosphate coatings for bio-implant applications: Materials, performance, factors, and methodologies, Materials Science and Engineering R, 66 (2009), 1-70
  • [169] D.D. Deligiarmi, N. Katsla, S. Ladas, D. Sotiropoulou, J. Amedee, Y.F. Missirlis, Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption, Biomaterials, 22 (2001), 1241-1251
  • [170] H. Zeng, K.K. Chittur, W.R. Lacefield, Analysis of bovine serum albumin adsorption on calcium phosphate and titanium surfaces, Biomaterials, 20 (1999), 377
  • [171] M.T. Bernards, Ch. Qin, S. Jiang, MC3T3-EI cell adhesion to hydroxyapatite with adsorbed bone staloprotein, bone osteopontin, and bovine serum albumin, Colloids and Surface B:Biointerfaces, 64 (2008), 236-247
  • [172] M. Yamaguchi, A. Igarashi, H. Misawa, Y. Tsurusaki, Journal of Cellular Biochemistry, Enhancement of albumin expression in bone tissues with heating rat fractures, 89(2) (2003), 356-363
  • [173] K. Ishida, M. Yamaguchi, Role of albumin in osteoplastic cells: Enhancement of cell proliferation and suppression of alkaline phosphatase activity, International Journal of Molecular Medicine, 14(6) (2004), 1077-1081
  • [174] K. S. Brammer, S. On, Ch. J. Frandsen, S. Jin, TiO2 nanotubes structures for enhanced cell and biological functionality, JOM,62(4) (2010), 50
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e455255b-a076-4c10-8909-705fc7bc9a6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.