PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Habitats in the Pre-Taghanic (Givetian, Middle Devonian) muddy carbonate ramp at Miłoszów (Holy Cross Mountains, Poland) : geochemical and microfacies evidence

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The well-known fossiliferous and lithologically variable Middle Devonian Shaly-Calcareous Skały Formation in the Łysogóry Region (northern part of the Holy Cross Mountains, central Poland) was studied for the first time in terms of elemental geochemistry, carbon isotope stratigraphy and limestone microfacies. Three Lower to Middle Givetian marly-limestone successions, exposed at Miłoszów, represent middle to outer facies belts of the vast carbonate ramp, characterized by very rich epifaunal and infaunal benthic life in muddy, oxic, eutrophic, and photic zone habitats. Brachiopods and occasionally corals (in mesophotic association), erect branching bryozoans, and tiny crinoids played a leading role among flourishing sessile suspension-feeders. High-energy storm events, possibly even a tsunami, during the brief Early Givetian time strengthened a prolific carbonate ooze delivery system from shallow ramp areas, including restricted back-ramp lagoons and a variety of organic buildups, populated by corals and stromatoporoids. The ecologically mixed skeletal grain association is characterized by the rich occurrence of a typical lagoonal biota, calcispheres and amphiporoids. The effective carbonate factory declined stepwise regionally during the Middle Givetian because of an intermittent progradation of the deltaic system of the Świętomarz Beds, linked with climate cooling and the activation of block movements. The regional carbonate crisis resulted in the demise of diverse benthic life, including the prolific calcified microbiota. The higher Skały Formation succession, deposited between the important Kačák and Taghanic bioevents, is noticeable for a background carbon-isotope pattern in carbonate and organic matter signatures, with the baseline with the baseline δ13 Ccarb values between 1‰ and 2‰. The microfacies and chemostratigraphic data confirm that at least the lower pumilio bioevent was not recorded in the Łysogóry Region.
Rocznik
Strony
381--409
Opis fizyczny
Bibliogr. 110 poz., fot., rys., tab., wykr.
Twórcy
  • Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland
  • Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland
  • Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland
Bibliografia
  • 1. Aboussalam, Z. S. & Becker, R. T., 2011. The global Taghanic Biocrisis (Givetian) in the eastern Anti-Atlas, Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology, 304: 136-164.
  • 2. Algeo, T. J. & Lyons, T. W., 2006. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21: 1-23.
  • 3. Algeo, T. J. & Maynard, J. B., 2008. Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environments. Geosphere, 4: 872-887.
  • 4. Allan, J. R. & Matthews, R. K., 1982. Isotope signatures associated with early meteoric diagenesis. Sedimentology, 29: 797-817.
  • 5. Bábek, O., Faměra, M., Šimiček, D., Weinerová, H., Hladil, J. & Kalvoda, J., 2018. Sea-level changes vs. organic productivity as controls on Early and Middle Devonian bioevents: Facies- and gamma-ray based sequence-stratigraphic correlation of the Prague Basin, Czech Republic. Global and Planetary Change, 160: 75-95.
  • 6. Baird, G. C. & Brett, C. E., 2008. Late Givetian Taghanic bioevents in New York State: new discoveries and questions. Bulletin of Geosciences, 83: 357-370.
  • 7. Baliński, A. & Halamski, A. T., (in press). Pre-Taghanic (Lower to lower Middle Givetian) brachiopods from Miłoszów in the Holy Cross Mountains (Poland). Annales Societatis Geologorum Poloniae, 93.
  • 8. Barham, M., Joachimski, M. M., Murray, J. & Williams, D. M., 2012. Diagenetic alteration of the structure and S18O signature of Palaeozoic fish and conodont apatite: potential use for corrected isotope signatures in palaeoenvironmental interpretation. Chemical Geology, 298-299: 11-19.
  • 9. Becker, R. T., Gradstein, F.-M. & Hammer, O., 2012. The Devonian Period. In: Gradstein, F., M., Ogg, J. G., Schmitz, M. & Ogg, G. (eds), The Geologic Time Scale 2012. Elsevier, Amsterdam, Boston, pp. 559-601.
  • 10. Becker, R. T., Königshof, P. & Brett, C. E., 2016. Devonian climate, sea level and evolutionary events: an introduction. In: Becker, R. T., Königshof, P. & Brett, C. E. (eds), Devonian Climate, Sea Level and Evolutionary Events. Geological Society, London, Special Publications, 423: 1-10.
  • 11. Becker, R. T., Marshall, J. E. A. & Da Silva, A.-C., 2020. The Devonian period. With contributions by F. P. Agterberg, F. M. Gradstein and J. G. Ogg. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. (eds), Geologic Time Scale, Volume 2. Elsevier, pp. 733-810.
  • 12. Berkyová, S. & Munnecke, A., 2010. “Calcispheres” as a source of lime mud and peloids - evidence from the early Middle Devonian of the Prague Basin, the Czech Republic. Bulletin of Geosciences, 85: 585-602.
  • 13. Blood, D. R., Lash, G. G. & Bridges, L. C., 2013. Biogenic silica in the Devonian shale succession of the Appalachian Basin, USA. Search and Discovery Article 50864. AAPG/Datapages, Inc. http://www.searchanddiscovery.com/documents/2013/ 50864bloodndx_blood.pdf [27.10.2022.]
  • 14. Brand, U., Jiang, G., Azmy, K., Bishop, J. & Montañez, I. P, 2012. Diagenetic evaluation of a Pennsylvanian carbonate succession (Bird Spring Formation, Arrow Canyon, Nevada, U.S.A.) - 1: Brachiopod and whole rock comparison. Chemical Geology, 308: 26-39.
  • 15. Brett, C. E., Baird, G. C., Bartholomew, A., DeSantis, M. & Ver Straeten, C., 2011. Sequence stratigraphy and revised sea level curve for the Middle Devonian of Eastern North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 304: 21-53.
  • 16. Brett, C. E., Zambito, J. J., IV, McLaughlin, P. I. & Emsbo, P, 2020. Revised perspectives on Devonian biozonation and environmental volatility in the wake of recent time-scale revisions. Palaeogeography, Palaeoclimatology, Palaeoecology, 549: 108843.
  • 17. Buggisch, W. & Joachimski, M. M., 2006. Carbon isotope stratigraphy of the Devonian of Central and Southern Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 240: 68-88.
  • 18. Calvert, S. E. & Pedersen, T. F., 2007. Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application. Developments in Marine Geology, 1: 567-644.
  • 19. Craigie, N., 2018. Principles of Elemental Chemostratigraphy. A Practical User Guide. Springer, Cham, 189 pp.
  • 20. Czarnocki, J., 1957. Prace geologiczne. T. II, Geologia regionu łysogórskiego. Stratygrafia i tektonika Gór Świętokrzyskich, z. 1. Prace Państwowego Instytutu Geologicznego, 18: 1-138. [In Polish.]
  • 21. Dubicka, Z., Gajewska, M., Kozłowski, W., Hallock, P. & Hohenegger, J., 2021. Photo synthetic activity in Devonian Foraminifera. Biogeosciences, 18: 5719-5728.
  • 22. Edinger, E. N., Copper, P, Risk, M. J. & Atmojo, W., 2002. Oceanography and reefs of recent and Paleozoic tropical epeiric seas. Facies, 47: 127-149.
  • 23. Flügel, E., 2010. Microfacies of Carbonate Rocks - Analysis, Interpretation and Application. Springer, Heidelberg, 984 pp.
  • 24. Fraser, T. A. & Hutchison, M. P, 2017. Lithogeochemical characterization of the Middle-Upper Devonian Road River Group and Canol and Imperial formations on Trail River, east Richardson Mountains, Yukon: age constraints and a depositional model for fine-grained strata in the Lower Paleozoic Richardson trough. Canadian Journal of Earth Sciences, 54: 731-765.
  • 25. Gajewska, M., 2022. Middle Devonian Foraminifera from the Holy Cross Mountains (Poland). Annales Societatis Geologorum Poloniae, 92: 411-424. [This issue.]
  • 26. García-Alcalde, J. L., 2010. Givetian brachiopod faunas of the Palentian Domain (N Spain). Revista Española de Paleontología, 25: 43-69.
  • 27. Głuchowski, E., 2005. Epibionts on Upper Eifelian crinoid columnals from the Holy Cross Mountains, Poland. Acta Palaeontologica Polonica, 50: 315-328.
  • 28. Gorzelak, P, Rakowicz, Ł., Salamon, M. A. & Szrek, P, 2011. Inferred placoderm bite marks on Devonian crinoids from Poland. Neues Jahrbuch für Paläontologie und Geologie, Abhandlungen, 259: 105-112.
  • 29. Grossman, E. L. & Joachimski, M. M., 2022. Ocean temperatures through the Phanerozoic reassessed. Scientific Reports, 12: 8938.
  • 30. Halamski, A. T., 2022. Middle Devonian biota and environments of the Łysogóry Region (Poland) - Introduction. Annales Societatis Geologorum Poloniae, 92: 317-321. [This issue.]
  • 31. Halamski, A., Baliński, A., Racki, G., Amler, M. R. W., Basse, M., Denayer, J., Dubicka, Z., Filipiak, P, Kondas, M., Krawczyński, W., Mieszkowski, R., Narkiewicz, K., Olempska, E., Wrzołek, T., Wyse Jackson, P. N., Zapalski, M. K., Zatoń, M. & Kozłowski, W., 2022. The pre-Taghanic (Givetian, Middle Devonian) ecosystems of Miłoszów (Holy Cross Mts, Poland). Annales Societatis Geologorum Poloniae, 92: 323-379. [This issue.]
  • 32. Hall, D., Sterner, M. & Shukla, R., 2013. Application of cuttings gas/oil analysis, rapid XRF and high-resolution photography to reservoir evaluation. World Oil, April 2013 issue, pp. 163-168.
  • 33. Hildred, G. V & Rice, C., 2014. Using high resolution chemostratigraphy to determine well-bore pathways in multilateral drilling campaigns: an example from the Horn River Formation, British Columbia, Canada. Extended abstract presented at SCPG/CSEG/CWLS GeoConvention 2012. TELUS Convention Centre and ERBC Core Research Centre, Calgary. www.searchanddiscovery.com/documents/ 2014/80362hildred/ndx_hildred [27.10.2022.]
  • 34. House, M. R., 2002. Strength, timing, setting and cause of midPalaeozoic extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 181: 5-25.
  • 35. Jagt-Yazykova, E. V, Krawczyński, W. & Rakociński, M., 2006. Molluscs from the Early Frasnian Goniatite Level at Kostomłoty in the Holy Cross Mountains, Poland. Acta Palaeontologica Polonica, 51: 707-718.
  • 36. Jakubowicz, M., Król, J., Zapalski, M. K., Wrzołek, T., Wolniewicz, P. & Berkowski, B., 2019. At the southern limits of the Devonian reef zone: palaeoecology of the Aferdou el Mrakib reef (Givetian, eastern Anti-Atlas, Morocco). Geological Journal, 54: 10-38.
  • 37. Joachimski, M. M., 1994. Subaerial exposure and deposition of shallowing upward sequences: evidence from stable isotopes of Purbeckian peritidal carbonates (basal Cretaceous), Swiss and French Jura Mountains. Sedimentology, 41: 805-824.
  • 38. Joachimski, M. M., Breisig, S., Buggisch, W., Talent, J. A., Mawson, R., Gereke, M., Morrow, J. R., Day, J. & Weddige, K., 2009. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth and Planetary Science Letters, 284: 599-609.
  • 39. Johnson, J. G., Klapper, G. & Sandberg, C. A., 1985. Devonian eustatic fluctuations in Euramerica. Geological Society of America Bulletin, 96: 567-587.
  • 40. Kabanov, P, Gouwy, S., van der Boon, A. & Grasby, S. E., 2022. Nature of Devonian anoxic events based on multiproxy records from Panthalassa, NW Canada. SSRN Electronic Journal, https://doi.org//10.2139/ssrn.4140260 [27.10.2022].
  • 41. Kaufmann, B., 1998. Middle Devonian reef and mud mounds on a carbonate ramp: Mader Basin (eastern Anti-Atlas, Morocco). In: Wright, V P & Burchette, T. P (eds), Carbonate Ramps. Geological Society Special Publications, 149: 417-435.
  • 42. Kaźmierczak, J., 1976. Volvocacean nature of some Palaeozoic non-radiosphaerid calcispheres and parathuraminid ‘foraminifera’. Acta Palaeontologica Polonica, 21: 245-258.
  • 43. Kaźmierczak, J. & Kremer, B., 2005. Post-mortem calcified Devonian acritarchs as a source of calcispheric structures. Facies, 51: 554-565.
  • 44. Kiipli, E., Kiipli, T., Kallaste, T. & Siir, S., 2012. Al2O3/TiO2 ratio of the clay fraction of Late Ordovician-Silurian carbonate rocks as an indicator of paleoclimate of the Fennoscandian Shield. Palaeogeography, Palaeoclimatology, Palaeoecology, 365-366: 312-320.
  • 45. Kłossowski, J., 1985. Middle Devonian sedimentation in the Łysogóry region (Świętomarz-Śniadka section). Przegląd Geologiczny, 33: 264-267. [In Polish, with English summary.]
  • 46. Kondas, M. & Filipiak. P, 2022. Middle Devonian (Givetian) palynology of the northern Holy Cross-Mountains (Miłoszów, south-central Poland). Review of Palaeobotany and Palynology, 301: 104629.
  • 47. Konon, A., 2007. Buckle folding in the Kielce Unit, Holy Cross Mountains, central Poland. Acta Geologica Polonica, 57: 415-441.
  • 48. Königshof, P., Nesbor, H.-D. & Flick, H., 2010. Volcanism and reef development in the Devonian: a case study from the Lahn syncline, Rheinisches Schiefergebirge (Germany). Gondwana Research, 17: 264-280.
  • 49. Kuleta, M. & Malec, J., 2015. Petrographic study of the Middle Devonian Świętomarz Beds of the Holy Cross Mountains and the Żniatyń Member from the SE Lublin area. Biuletyn Państwowego Instytutu Geologicznego, 463: 43-62. [In Polish, with English summary.]
  • 50. Lim, D., Kim, H., Kim, J., Jeong, D. & Kim, D., 2020. Mercury proxy for hydrothermal and submarine volcanic activities in the sediment cores of Central Indian Ridge. Marine Pollution Bulletin, 159: 111513.
  • 51. Lottmann, J., 1990a. Die pumilio-Events (Mittel-Devon). Göttinger Arbeiten zur Geologie und Paläontologie, 44: 1-98.
  • 52. Lottmann, J., 1990b. The Middle Givetian pumilio-Events a tool for high time resolution and event-stratigraphical correlation. In: Kauffman, E. G. & Walliser, O. H. (eds), Extinction Events in Earth History. Lecture Notes in Earth Sciences, Volume 30. Springer, Berlin, Heidelberg, pp. 145-149.
  • 53. Łuczyński, P., 2022. Tsunamites versus tempestites: Various types of redeposited stromatoporoid beds in the Devonian of the Holy Cross Mountains (Poland), a case study from the Ołowianka Quarry. PLoS ONE, 17: e0268349.
  • 54. Łuczyński, P., Skompski, S. & Kozłowski, W., 2014. Stromatoporoid beds and flat-pebble conglomerates interpreted as tsunami deposits in the upper Silurian of Podolia, Ukraine. Acta Geologica Polonica, 64: 261-280.
  • 55. Machel, H. G. & Hunter, I. G., 1994. Facies models for Middle to Late Devonian shallow-marine carbonates, with comparisons to modern reefs: a guide for facies analysis. Facies, 30: 155-176.
  • 56. Malec, J., 2012. The Middle Devonian Świętomarz beds of the Holy Cross Mts. in the light of sedimentological study. Biuletyn Państwowego Instytutu Geologicznego 452: 131— 166. [In Polish, with English summary.]
  • 57. Malec, J. & Turnau, E., 1997. Middle Devonian conodont, ostracod and miospore stratigraphy of the Grzegorzowice-Skały section, Holy Cross Mountains, Poland. Bulletin of the Polish Academy of Sciences, Earth Sciences, 45: 67-86.
  • 58. McGhee, G. R., Clapham, M. E., Sheehan, P. M., Bottjer, D. J. & Droser, M. L., 2013. A new ecological-severity ranking of major Phanerozoic biodiversity crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 370: 260-270.
  • 59. Narkiewicz, K. & Königshof, P., 2018. New Middle Devonian conodont data from the Dong Van area, NE Vietnam (South China Terrane). Paläontologische Zeitschrift, 92: 633-650.
  • 60. Narkiewicz, M., Narkiewicz, K. & Turnau, E., 2011. Devonian depositional development of the Łysogóry-Radom and Lublin Basins (south-eastern Poland). In: Narkiewicz, M. (ed.) Devonian basins of south-eastern Poland. Prace Państwowego Instytutu Geologicznego, 196: 289-318.
  • 61. Narkiewicz, M., Racki, G., Skompski, S. & Szulczewski, M., 2006. Procesy i zdarzenia w historii geologicznej Gór Świętokrzyskich. In: Skompski, S. & Żylińska, A. (eds), Materiały konferencyjne, LXXVII Zjazd Naukowy Polskiego Towarzystwa Geologicznego, Ameliówka k. Kielc 28-30 czerwca 2006 r., pp. 51-77. [In Polish.]
  • 62. Pajchlowa, M., 1957. The Devonian in the Grzegorzowice-Skały section. Biuletyn Instytutu Geologicznego, 122: 145-254. [In Polish, with English summary.]
  • 63. Pettijohn, F. J., 1957. Sedimentary Rocks, 2nd Edition. Harper, New York, pp. 718.
  • 64. Pratt, P R. & Rule, R. G., 2021. A Mesoproterozoic carbonate platform (lower Belt Supergroup of western North America): sediments, facies, tides, tsunamis and earthquakes in a tectonically active intracratonic basin. Earth-Science Reviews, 217: 103626.
  • 65. Pyle, L. J. & Gal, L. P., 2016. Reference section for the Horn River Group and definition of the Bell Creek Member, Hare Indian Formation in central Northwest Territories. Bulletin of Canadian Petroleum Geology, 64: 67-98.
  • 66. Racki, G., 1993. Evolution of the bank to reef complex in the Devonian of the Holy Cross Mountains. Acta Palaeontologica Polonica, 37: 87-182.
  • 67. Racki, G., Mazur, S., Narkiewicz, K., Pisarzowska, A., Bardziński, W., Kołtonik, K., Szymanowski, D., Filipiak, P. & Kremer, B., 2022b. A waning Saxothuringian Ocean evidenced in the Famennian tephra-bearing siliceous succession of the Bardo Unit (Central Sudetes, SW Poland). Geological Society of America Bulletin, 134: 2373-2398.
  • 68. Racki, G., Piechota, A., Bond, D. & Wignall, P. B., 2004. Geochemical and ecological aspects of lower Frasnian pyrite-ammonoid level at Kostomłoty (Holy Cross Mountains, Poland). Geological Quarterly, 48: 267-282.
  • 69. Racki, G. & Soboń-Podgórska, J., 1993. Givetian and Frasnian calcareous microbiotas of the Holy Cross Mountains. Acta Palaeontologica Polonica, 37: 255-289.
  • 70. Racki, G., Wójcik, K., Halamski, A. T. & Narkiewicz, M., 2022a. Middle Devonian Skały Formation in the Holy Cross Mountains (Poland) - formal description and subdivision based on a new field data. Annales Societatis Geologorum Poloniae, 92: 425-444. [This issue.]
  • 71. Rakociński, M., Marynowski, L., Zatoń, M. & Filipiak, P, 2021. The mid-Tournaisian (Early Carboniferous) anoxic event in the Laurussian shelf basin (Poland): an integrative approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 566: 110236.
  • 72. Ratcliffe, R., Wright, M. & Spain, D., 2012. Unconventional methods for unconventional plays: using elemental data to understand shale resource plays - part 2. Petroleum Exploration Society of Australia News, 116: 55-60.
  • 73. Read, J. F., 1985. Carbonate platform facies models. American Associacion of Petroleum Geologists Bulletin, 69: 1-21.
  • 74. Reijmer, J. G., 2021. Marine carbonate factories: review and update. Sedimentology, 68: 1729-1796.
  • 75. Rubinowski, Z., 1969. Geologia, mineralizacja i geneza złóż siarczków żelaza typu Rudek w Górach Świętokrzyskich i metodyka ich poszukiwań. Rocznik Polskiego Towarzystwa Geologicznego, 39: 721-722. [In Polish.]
  • 76. Sageman, B. B. & Lyons, T. W., 2003. Geochemistry of finegrained sediments and sedimentary rocks. In: Mackenzie, F. T. (ed.), Treatise on Geochemistry, 7: 115-158.
  • 77. Sartenaer, P & Racki, G., 1992. A new late Givetian rhynchonellid species from the Holy Cross Mountains, Poland, and its relevance to stratigraphical and ecological problems near the Givetian/Frasnian boundary. Bulletin de l’Institut royal des Sciences naturelles de Belgique, Sciences de la Terre, 62: 61-73.
  • 78. Scotese, C. R., Song, H., Mills, B. J. W. & van der Meer, D. G., 2021. Phanerozoic paleotemperatures: the Earth’s changing climate during the last 540 million years. Earth-Science Reviews, 215: 103503.
  • 79. Simon, L., Godderis, Y, Buggisch, W., Strauss, H. & Joachimski, M. M., 2007. Modeling the carbon and sulfur isotope compositions of marine sediments: climate evolution during the Devonian. Chemical Geology, 246: 19-38.
  • 80. Song, H., Wignall, P. B., Song, H., Dai, X. & Chu, D., 2019. Seawater temperature and dissolved oxygen over the past 500 million years. Journal of Earth Sciences, 30: 236-243.
  • 81. Stewart, E. M. & Ague, J. J., 2018. Infiltration-driven metamorphism, New England, USA: regional CO2 fluxes and implications for Devonian climate and extinctions. Earth and Planetary Science Letters, 489: 123-134.
  • 82. Stricanne, L., Munnecke, A. & Pross, J., 2006. Assessing mechanisms of environmental change: palynological signals across the late Ludlow (Silurian) positive isotope excursion (S13C, S18O) on Gotland, Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology, 230: 1-31.
  • 83. Struve, W., 1963. Das Korallenmeer der Eifel vor 300 Millionen Jahre-Funde, Deutungen, Probleme. Natur Museum, 93: 237-276.
  • 84. Struve, W., 1992. Neues zur Stratigraphie und Fauna des rhenotypen Mittel-Devon. Senckenbergiana Lethaea, 71: 503-624.
  • 85. Taylor, S. R. & McLennan, S., 1985. The Continental Crust: its Composition and Evolution. Blackwell Scientific Publications, Oxford, 312 pp.
  • 86. Tribovillard, N., Algeo, T. J., Baudin, F. & Riboulleau, A., 2012. Analysis of marine environmental conditions based on molybdenum-uranium covariation - applications to Mesozoic paleoceanography. Chemical Geology, 324-325: 46-58.
  • 87. Tribovillard, N., Algeo, T. J., Lyons, T. & Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232: 12-32.
  • 88. Turnau, E., 1996. Miospore stratigraphy of Middle Devonian deposits from Western Pomerania. Review of Palaeobotany and Palynology, 93: 107-125.
  • 89. Turnau, E., 2007. Palinostratygrafia. In: Matyja, H. (ed.), Profile Głębokich Otworów Wiertniczych - Polskie Łąki PIG 1, 122. Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy, Warszawa, pp. 62-69. [In Polish.]
  • 90. Turnau, E., 2008. Wyniki badań palinostratygraficznych. In: Matyja, H. (ed.), Profile Głębokich Otworów Wiertniczych-Jamno IG 1, IG2, IG3,124. Państwowy Instytut Geologiczny-Państwowy Instytut Badawczy, Warszawa, pp. 125-135. [In Polish.]
  • 91. Turnau, E. & Racki, G., 1999. Givetian palynostratigraphy and palynofacies: new data from the Bodzentyn Syncline (Holy Cross Mountains, central Poland). Review of Palaeobotany and Palynology, 106: 237-271.
  • 92. van Geldern, R., Joachimski, M. M., Day, J., Jansen, U., Alvarez, F., Yolkin, E. A. & Ma, X.-P., 2006. Carbon, oxygen and strontium isotope records of Devonian brachiopod shall calcite. Palaeogeography, Palaeoclimatology, Palaeoecology, 240: 47-67.
  • 93. van Hengstum, P. J. & Grocke, D. R., 2008. Stable isotope record of the Eifelian-Givetian boundary Kacak-otomari Event (Middle Devonian) from Hungry Hollow, Ontario, Canada. Canadian Journal of Earth Science, 45: 353-366.
  • 94. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y, Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G. & Strauss, H., 1999. 87Sr/86Sr, S13C and S18O evolution of Phanerozoic seawater. Chemical Geology, 161: 59-88.
  • 95. Ver Straeten, C. A., Brett, C. E. & Sageman, B. B., 2011. Mudrock sequence stratigraphy: a multi-proxy (sedimentological, paleobiological and geochemical) approach, Devonian Appalachian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 304: 54-73.
  • 96. Wedepohl, K. H., 1970. Geochemische Daten von sedimentären Karbonaten und Karbonatgesteinen in ihrem faziellen und petrogenetischen Aussagewert. Verhandlungen der Geologischen Bundesanstalt, 4: 692-705.
  • 97. Wedepohl, K. H., 1971. Environmental influences on the chemical composition of shales and clays. In: Ahrens, L. H., Press, F., Runcorn, S. K. & Urey, H. C. (eds), Physics and Chemistry of the Earth. Pergamon Press, Oxford, pp. 307-331.
  • 98. Wedepohl, K. H., 1991. The composition of the upper earth’s crust and the natural cycles of selected metals. Metals in natural raw materials. Natural resources. In: Merian, E. (ed.), Metals and Their Compounds in the Environment. Verlag Chemie (VCH), Weinheim, pp.
  • 99. Wendt, J., Belka, Z., Kaufmann, B., Kostrewa, R. & Hayer, J., 1997. The world’s most spectacular carbonate mud mounds (Middle Devonian, Algerian Sahara). Journal of Sedimentary Research, 67: 424-436.
  • 100. Wilson, J. L., 1975. Carbonate Facies in the Geologic History. Springer, Berlin, 410 pp.
  • 101. Wolniewicz, P, 2021. From lagoons to mud mounds: palaeoecology of the Givetian to Frasnian stromatoporoids from the Holy Cross Mountains, Poland. Lethaia, 54: 378-398.
  • 102. Woroncowa-Marcinowska, T., 2012. Middle Devonian conodonts and structural implications for Świętomarz-Śniadka section (Holy Cross Mountains). Annales Societatis Geologorum Poloniae, 82: 349-360.
  • 103. Wright, A. M., Ratcliffe, K. T., Zaitlin, B. A. & Wray, D. S., 2010. The application of chemostratigraphic techniques to distinguish compound incised valleys in low-accommodation incised-valley systems in a foreland-basin setting: an example from the Lower Cretaceous Mannville Group and Basal Colorado Sandstone (Colorado Group), Western Canadian Sedimentary Basin. In: Ratcliffe, K. T. & Zaitlin, B. A. (eds), Application of Modern Stratigraphic Techniques: Theory and Case Histories. SEPM Special Publication, 94: 93-107.
  • 104. Yan, Y., Xia, B., Lin, G., Cui, X., Hu, X., Yan, P. & Zhang, F., 2007. Geochemistry of the sedimentary rocks from the Nanxiong Basin, South China and implications for provenance, paleoenvironment and paleoclimate at the K/T boundary. Sedimentary Geology, 197: 127-140.
  • 105. Yans, J., Corfield, R. M., Racki, G. & Preat, A., 2007. Evidence for a major perturbation of the carbon cycle in the Middle Frasnian punctata conodont Zone. Geological Magazine, 144: 263-270.
  • 106. Zambito, J. J., Brett, C. E. & Baird, G. C., 2012. The Late Middle Devonian (Givetian) global Taghanic Biocrisis in its type area (Northern Appalachian Basin): geologically rapid faunal transitions driven by global and local environmental changes. In: Talent, J. A. (ed.), Earth and Life. Global Biodiversity, Extinction Intervals and Biogeographic Perturbations Through Time. Springer, Berlin, pp. 677-703.
  • 107. Zapalski, M. K., Król, J. J., Halamski, A. T., Wrzołek, T., Rakociński, M. & Baird, A. H., 2022. Coralliths of tabulate corals from the Devonian of the Holy Cross Mountains (Poland). Palaeogeography, Palaeoclimatology, Palaeoecology, 585: 1-11.
  • 108. Zatoń, M., Malec, J., Wrzołek, T., Kubiszyn, B. & Zapalski, M. K., 2022. Episkeletobionts of large rugose corals from the Middle Devonian mesophotic palaeoenvironment recorded in the Pokrzywianka Beds (Holy Cross Mountains, Poland). Annales Societatis Geologorum Poloniae, 92: 465-484. [This issue.]
  • 109. Zatoń, M. & Wrzołek, T., 2020. Colonization of rugose corals by diverse epibionts: dominance and syn vivo encrustation in a Middle Devonian (Givetian) soft-bottom habitat of the Holy Cross Mountains, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 556: 109899.
  • 110. Zhou, K. & Pratt, B. R., 2019. Upper Devonian (Frasnian) stromatactis-bearing mud mounds, western Alberta, Canada: reef framework dominated by peloidal microcrystalline calcite. Journal of Sedimentary Research, 89: 833-848.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e453be42-0fd4-44a8-942c-22d2362718a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.