PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Machine learning for supporting irrigation decisions based on climatic water balance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A machine learning model was developed to support irrigation decisions. The field research was conducted on ‘Gala’ apple trees. For each week during the growing seasons (2009-2013), the following parameters were determined: precipitation, evapotranspiration (Penman-Monteith formula), crop (apple) evapotranspiration, climatic water balance, crop (apple) water balance (AWB), cumulative climatic water balance (determined weekly, ∑CWB), cumulative apple water balance (∑AWB), week number from full bloom, and nominal classification variable: irrigation, no irrigation. Statistical analyses were performed with the use of the WEKA 3.9 application software. The attribute evaluator was performed using Correlation Attribute Eval with the Ranker Search Method. Due to its highest accuracy, the final analyses were performed using the WEKA classifier package with the J48graft algorithm. For each of the analysed growing seasons, different correlations were found between the water balance determined for apple trees and the actual water balance of the soil layer (10-30 cm). The model made correct decisions in 76.7% of the instances when watering was needed and in 87.7% of the instances when watering was not needed. The root of the classification tree was the AWB determined for individual weeks of the growing season. The high places in the tree hierarchy were occupied by the nodes defining the elapsed time of the growing season, the values of ∑CWB and ∑AWB.
Wydawca
Rocznik
Tom
Strony
25--30
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
  • The National Institute of Horticultural Research, Konstytucji 3 Maja St, 1/3, 96-100 Skierniewice, Poland
  • The National Institute of Horticultural Research, Konstytucji 3 Maja St, 1/3, 96-100 Skierniewice, Poland
  • The National Institute of Horticultural Research, Konstytucji 3 Maja St, 1/3, 96-100 Skierniewice, Poland
  • The National Institute of Horticultural Research, Konstytucji 3 Maja St, 1/3, 96-100 Skierniewice, Poland
Bibliografia
  • Adnan, M., Latif, M.A. and Nazir, M. (2017) “Estimating evapotranspiration using machine learning techniques,” International Journal of Advanced Computer Science and Applications, 8, pp. 108–113. Available at: http://dx.doi.org/10.14569/IJAC-SA.2017.080915.
  • Ali, M.H. and Mubarak, S. (2017) “Effective rainfall calculation methods for field crops: An overview, analysis and new formulation,” Asian Research Journal of Agriculture, 7, pp. 1–12. Available at: https://doi.org/10.9734/ARJA/2017/36812.
  • Allen, R.G. et al. (1998) “Crop evapotranspiration: guidelines for computing crop water requirements,” FAO Irrigation and Drainage Paper, 56. Rome, Italy: Food and Agriculture Organization of the United Nations.
  • Amarasinghe, U.A. and Smakhtin, V. (2014) “Global water dem and projections: past, present and future,” Research Report, 156. Colombo, Sri Lanka: International Water Management Institute. Available at: https://doi.org/10.5337/2014.212.
  • Andriyas, S. and McKee, M. (2013) “Recursive partitioning techniques for modeling irrigation behavior,” Environmental Modelling & Software, 47, pp. 207–217. Available at: https://doi.org/10.1016/j.envsoft.2013.05.011.
  • Beltrão, J., Antunes da Silva, A. and Asher, J.B. (1996) “Modeling the effect of capillary water rise in corn yield in Portugal,” Irrigation and Drainage Systems, 10, pp. 179–189. Available at: https://doi.org/10.1007/BF01103700.
  • Benos, L. et al. (2021) “Machine learning in agriculture: A comprehensive updated review,” Sensors, 21(11), 3758. Available at: https://doi.org/10.3390/s21113758.
  • Bouckeart, R.R. et al. (2016) WEKA manual for version 3-9-1. Hamilton, New Zealand: The University of Waikato. Available at: https://usermanual.wiki/Document/WekaManual391.1255144600 (Accessed: January 9, 2023).
  • Cai, Y. et al. (2019) “Research on soil moisture prediction model based on deep learning,” PloS One, 14, e0214508. Available at: http://doi.org/10.1371/journal.pone.0214508.
  • Cobaner, M. (2011) “Evapotranspiration estimation by two different neuro-fuzzy inference systems,” Journal of Hydrology, 398(3–4), pp. 292–302. Available at: https://doi.org/10.1016/j.jhydrol.2010.12.030.
  • Davis, S.L. and Dukes, M.D. (2010) “Irrigation scheduling performance by evapotranspiration based controllers,” Agricultural Water Management, 98(1), pp. 19–28. Available at: https://doi.org/10.1016/j.agwat.2010.07.006.
  • Farmer, A. et al. (2008) Water scarcity and droughts. Brussels: European Parliament Policy Department: Economic and Scientific Policy. Available at: https://www.europarl.europa.eu/RegData/etudes/etudes/join/2008/401002/IPOL-ENVI_ET(2008)401002_EN.pdf (Accessed: January 2, 2023).
  • Farooq, M.S. et al. (2020) “Role of IoT technology in agriculture: A systematic literature review,” Electronics, 9(2), 319. Available at: https://doi.org/10.3390/electronics9020319.
  • Gabr, M.E.S. (2022) “Management of irrigation requirements using FAO-CROPWAT 8.0 model: A case study of Egypt,” Modeling Earth Systems and Environment, 8, pp. 3127–3142. Available at: https://doi.org/10.1007/s40808-021-01268-4.
  • Gill, M.K. et al. (2006) “Soil moisture prediction using support vector machines,” Journal of the American Water Resources Association, 42, pp. 1033–1046. Available at: https://doi.org/10.1111/j.1752-1688.2006.tb04512.x.
  • Goap, A. et al. (2018) “An IoT based smart irrigation management system using machine learning and open source technologies,” Computers and Electronics in Agriculture, 155, pp. 41–49. Available at: https://doi.org/10.1016/j.compag.2018.09.040.
  • GRFC (2022) Global report on food crises 2022. Rome: Global Network Against Food Crises, The Food Security Information Network. Available at: https://www.wfp.org/publications/global-report-food-crises-2022 (Accessed: January 2, 2023].
  • Gu, Z. et al. (2020) “Irrigation scheduling approaches and applications: A review,” Journal of Irrigation and Drainage Engineering, 146, 04020007. Available at: https://doi.org/10.1061/(ASCE)IR.1943-4774.0001464.
  • Hedley, C.B. et al. (2013) “Soil water status and water table depth modelling using electromagnetic surveys for precision irrigation scheduling,” Geoderma, 199, pp. 22–29. Available at: https://doi.org/10.1016/j.geoderma.2012.07.018.
  • Iglesias, A. et al. (2012) “A regional comparison of the effects of climate change on agricultural crops in Europe,” Climatic Change, 112, pp. 29–46. Available at: https://doi.org/10.1007/s10584-011-0338-8.
  • Jones, H.G. (2004) “Irrigation scheduling: advantages and pitfalls of plant-based methods,” Journal of Experimental Botany, 55, pp. 2427–2436. Available at: https://doi.org/10.1093/jxb/erh213.
  • Lykhovyd, P. (2022) “Comparing reference evapotranspiration calculated in ETo calculator (Ukraine) mobile app with the estimated by standard FAO-based approach,” AgriEngineering, 4, pp. 747–757. Available at: https://doi.org/10.3390/agriengineering 4030048.
  • Martin, D.L., Stegman, E.C. and Fereres, E. (1990) “Irrigation scheduling principles,” in G.J. Hoffman, T.A. Howell and K.H. Solomon (eds.) Management of farm irrigation systems. ASAE Monograph. St. Joseph, USA: ASAE, pp. 155–199.
  • Megalingam, R.K. et al. (2020) “Irrigation monitoring and prediction system using machine learning” in 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 5–7.06.2020. Available at: https://doi.org/10.1109/INCET49848.2020.9153993.
  • Meier, J., Zabel, F. and Mauser, W. (2018) “A global approach to estimate irrigated areas – A comparison between different data and statistics,” Hydrology and Earth System Sciences 22, pp. 1119–1133. Available at: https://doi.org/10.5194/hess-22-1119-2018.
  • Meshram, V. et al. (2021) “Machine learning in agriculture domain: A state-of-art survey,” Artificial Intelligence in the Life Sciences, 1, 100010. Available at: https://doi.org/10.1016/j.ailsci.2021.100010.
  • Miranda de, R.A.C. and Butler, D.R. (1986) “Interception of rainfall in a hedgerow apple orchard,” Journal of Hydrology, 87, pp. 245–253. Available at: https://doi.org/10.1016/0022-1694(86)90017-X.
  • Mittelbach, H., Lehner, I. and Seneviratne, S.I. (2012) “Comparison of four soil moisture sensor types under field conditions in Switzerland,” Journal of Hydrology, 430–431, pp. 39–49. Available at: https://doi.org/10.1016/j.jhydrol.2012.01.041.
  • Murase, H., Honami, N. and Nishiura, Y. (1995) “A neural Network estimation technique for plant water status using the textural features of pictorial data plant canopy,” Acta Horticulturae, 399, pp. 255–262. Available at: https://doi.org/10.17660/ActaHortic.1995.399.30.
  • Muzylo, A. et al. (2009) “A review of rainfall interception modeling,” Journal of Hydrology, 370, pp. 191–206. Available at: https://doi.org/10.1016/j.jhydrol.2009.02.058.
  • Perea, R.G. et al. (2019) “Prediction of irrigation event occurrence at farm level using optimal decision trees,” Computers and Electronics in Agriculture, 157, pp. 173–180. Available at: https://doi.org/10.1016/j.compag.2018.12.043.
  • Quinlan, J.R. (1993) “Combining instance-based and model-based learning,” ICML’93: Proceedings of The Tenth International Conference on Machine Learning, pp. 236–243. Available at: https://dl.acm.org/doi/10.5555/3091529.3091560.
  • Ramachandran, V. et al. (2022) “Exploiting IoT and its enabled technologies for irrigation needs in agriculture,” Water, 14(5), 719. Available at: https://doi.org/10.3390/w14050719.
  • Sharma, D. et al. (2016) “A technical assessment of IoT for Indian agriculture sector,” IJCA Proceedings of the National Symposium on Modern Information and Communication Technologies for Digital India, 1, pp. 1–4.
  • Treder, W. and Konopacki, P. (1999) “Impact of quantity and intensity of rainfall on soil water content in an orchard located in the central part of Poland,” Journal of Water and Land Development, 3, pp. 47–58.
  • Treder, W. et al. (2013) “Irrigation service – An internet decision support system for irrigation of fruit crops,” Infrastructure and Ecology of Rural Areas, 1, pp. 19–30.
  • Treder, W. et al. (2022) “Assessment of rainfall efficiency in an apple orchard,” Journal of Water and Land Development, 53, pp. 51–57. Available at: https://doi.org/10.24425/jwld.2022.140779.
  • Treder, W. et al. (2023) “Evaluating the suitability of a new telemetric capacitance-based measurement system for real-time application in irrigation and fertilization management,” Journal of Water and Land Development, 56, p. 1–7. Available at: https://doi.org/10.24425/jwld.2023.143746.
  • Veerachamy, R. and Ramar, R. (2022) “Agricultural Irrigation Recommendation and Alert (AIRA) system using optimization and machine learning in Hadoop for sustainable agriculture,” Environmental Science and Pollution Research, 29, pp. 19955–19974. Available at: https://doi.org/10.1007/s11356-021-13248-3.
  • Viani, F. et al. (2017) “Low-cost wireless monitoring and decision support for water saving in agriculture,” IEEE Sensors Journal, 17, pp. 4299–4309. Available at: https://doi.org/10.1109/JSEN.2017.2705043.
  • Webb, G.I. (1999) “Decision tree grafting from the all-tests-but-one partition,” in IJCAI'99: Proceedings of the Proceedings of the 16th International Joint Conference on Artificial Intelligence, 2, pp. 702–707. San Francisco: CA U.S. Morgan Kaufmann Publishers Inc. Available at: https://dl.acm.org/doi/10.5555/1624312.1624319.
  • Xiaoyan, L. et al. (2000) “Rainfall interception loss by pebble mulch in the semiarid region of China,” Journal of Hydrology, 228, pp. 165–173. Available at: https://doi.org/10.1016/S0022-1694(00)00152-9.
  • Yang, F.J. (2019) “An extended idea about decision trees,” in: Proceedings of the 6th Annual Conference on Computational Science and Computational Intelligence. Las Vegas, USA, 5–7 Dec 2019. Piscataway, NJ: IEEE.
  • Yu, L. et al. (2021) “Review of research progress on soil moisture sensor technology,” International Journal of Agricultural and Biological Engineering, 14, pp. 32–42. Available at: https://doi.org/10.25165/j.ijabe.20211404.6404.
  • Yuan, B.Z., Nishiyama, S. and Kang, Y. (2003) “Effects of different irrigation regimes on the growth and yield of drip-irrigated potato,” Agricultural Water Management, 63, pp. 153–167. Available at: https://doi.org/10.1016/S0378-3774(03)00174-4.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e450a3ac-373b-4557-971d-06544fda07d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.