Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A novel technology for the simultaneous and independent measurement of dual parameters is proposed and experimented. By using a single fiber Bragg grating half-pasted by 1C-LV epoxy under different curing conditions, the sensor structure is designed such that the reflective single-peak spectrum splits into a twin-peak spectrum, which makes the FBG spectrum form a natural spectral peak splitting bias. A measurement limitation exists in the FBG sensor packaging at room temperature, which can be solved by the high-temperature cured packaging method. To verify the validity of the theory and methodology, the experimental system is used. In the range from –1000 to +1000 με and from 35 to 75°C, the Bragg wavelength change is relative linear to the strain and temperature. The temperature and strain variations can be independently and simultaneously measured using the split peak, and the deviations of the FBG sensor are ±1°C and ±5 με, respectively. This single FBG sensor can realize dual-parameter measurement, which is valuable for narrow-space health monitoring.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
391--406
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing, 100016, People’s Republic of China
- Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University, Beijing, 100016, People’s Republic of China
autor
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing, 100016, People’s Republic of China
autor
- Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University, Beijing, 100016, People’s Republic of China
autor
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing, 100016, People’s Republic of China
autor
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing, 100016, People’s Republic of China
- Overseas Expertise Introduction Center for Discipline Innovation (“111 Center”), Beijing Information Science & Technology University, Beijing, 100192, People’s Republic of China
Bibliografia
- [1] MIZUTANI Y., GROVES R.M., Multi-functional measurement using a single FBG sensor, Experimental Mechanics 51, 2011, pp. 1489–1498, DOI: 10.1007/s11340-011-9467-2.
- [2] SCHUKAR V., KUSCHE N., KALINKA G., HABEL W., Field deployable fiber Bragg grating strain patch for long-term stable health monitoring applications, Applied Sciences 3(1), 2013, pp. 39–54, DOI: 10.3390/app3010039.
- [3] LU L.D., ZHUANG W., LI H., LOU X., ZHU L., Fiber Bragg grating-based measurement of random-rotation parameters, Applied Optics 56(2), 2017, pp. 211–217, DOI: 10.1364/AO.56.000211.
- [4] WANG G., XING F., WEI M., YOU Z., Precision enhancement method for multiplexing image detector-based sun sensor with varying and coded apertures, Applied Optics 54(35), 2015, pp. 10467–10472, DOI: 10.1364/AO.54.010467.
- [5] LI H., ZHU L.Q., DONG M., LOU X., GUO Y., Analysis on strain transfer of surface-bonding FBG on Al 7075-T6 alloy host, Optik 127(3), 2016, pp. 1233–1236, DOI: 10.1016/j.ijleo.2015.10.227.
- [6] OZOLINS O., BOBROVS V., Theoretical study of all-optical RZ-OOK to NRZ-OOK format conversion in uniform FBG for mixed line-rate DWDM systems, Chinese Optics Letters 13(6), 2015, article 060603.
- [7] LIN G.C., WANG L., YANG C.C., SHIH M.C., CHUANG T.J., Thermal performance of metal-clad fiber Bragg grating sensors, IEEE Photonics Technology Letters 10(3), 1998, pp. 406–408, DOI: 10.1109/68.661425.
- [8] LI J., XING F., CHU D., LIU Z., High-accuracy self-calibration for smart, optical orbiting payloads integrated with attitude and position determination, Sensors 16(8), 2016, p. 1176, DOI: 10.3390/s16081176.
- [9] LI L.T., ZHANG D.S., WEN X., PENG S., FFPI-FBG hybrid sensor to measure the thermal expansion and thermo-optical coefficient of a silica-based fiber at cryogenic temperatures, Chinese Optics Letters 13(10), 2015, article 100601.
- [10] WANG Y.X., BAO H.H., RAN Z.L., HUANG J.W., ZHANG S., Integrated FP/RFBG sensor with a micro-channel for dual-parameter measurement under high temperature, Applied Optics 56(15), 2017, pp. 4250–4254, DOI: 10.1364/AO.56.004250.
- [11] XU M.G., ARCHAMBAULT J.L., REEKIE L., DAKIN J.P., Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors, Electronics Letters 30(13), 1994, pp. 1085–1087, DOI: 10.1049/el:19940746.
- [12] MOREY W.W., MELTZ G., GLENN W.H., Fibre optic Bragg grating sensors, Proceedings of SPIE 1169, 1990, pp. 98–107, DOI: 10.1117/12.963022.
- [13] KERSEY A.D., BERKOFF T.A., MOREY W.W., Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry–Perot wavelength filter, Optics Letters 18(16), 1993, pp. 1370–1372, DOI: 10.1364/OL.18.001370.
- [14] DONG X.Y., LIU Y.Q., LIU Z., DONG X., Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor, Optics Communications 192(3–6), 2001, pp. 213–217, DOI: 10.1016/S0030-4018(01)01157-9.
- [15] SENGUPTA D., SAI SHANKAR M., SAIDI REDDY P., SAI PRASAD R.L.N., SRIMANNARAYANA K., Sensing of hydrostatic pressure using FBG sensor for liquid level measurement, Microwave and Optical Technology Letters 54(7), 2012, pp. 1679–1683, DOI: 10.1002/mop.26890.
- [16] SHEN C.Y., ZHONG C., Novel temperature-insensitive fiber Bragg grating sensor for displacement measurement, Sensors and Actuators A: Physical 170(1–2), 2011, pp. 51–54, DOI: 10.1016/j.sna.2011.05.030.
- [17] HUANG J., ZHOU Z.D., WEN X.Y., ZHANG D.S., A diaphragm-type fiber Bragg grating pressure sensor with temperature compensation, Measurement 46(3), 2013, pp. 1041–1046, DOI: 10.1016/j.measurement.2012.10.010.
- [18] PEREIRA G., MCGUGAN M., MIKKELSEN L.P., Method for independent strain and temperature measurement in polymeric tensile test specimen using embedded FBG sensors, Polymer Testing 50, 2016, pp. 125–134, DOI: 10.1016/j.polymertesting.2016.01.005.
- [19] OORE S., OORE M., Uniform strength for large deflections of cantilever beams under end point load, Structural and Multidisciplinary Optimization 38, 2009, pp. 499–510, DOI: 10.1007/s00158-008-0291-y.
- [20] PARNE SAIDI REDDY, SAI PRASAD R.L.N., SEN GUPTA D., SAI SHANKAR M., SRIMANNARAYANA K., TIWARI U., MISHRA V., A simple FBG sensor for strain–temperature discrimination, Microwave and Optical Technology Letters 53(5), 2011, pp. 1021–1024, DOI: 10.1002/mop.25901.
- [21] WANG Z.F., WANG J., SUI Q.M., JIA L., The simultaneous measurement of temperature and mean strain based on the distorted spectra of half-encapsulated fiber Bragg gratings using improved particle swarm optimization, Optics Communications 392, 2017, pp. 153–161, DOI: 10.1016/j.optcom.2016.10.027.
- [22] YANG J., ZHANG J., XU S., CHANG S., Beam splitter based on Bragg grating-assisted coupler, Chinese Optics Letters 13(s1), 2015, p. S12501.
- [23] GAO Z.H., CHEN X.H., PENG D.L., Online self-calibration system for time grating angular displacement sensor, Guangxue Jingmi Gongcheng/Optics and Precision Engineering 23(1), 2015, pp. 93–101, DOI: 10.3788/OPE.20152301.0093.
- [24] SU Y., Material Mechanics, China: Renmin Educational Press, 1980, pp. 106–150.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e44d7795-dcfe-44f0-999b-3a7902f659e5