PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intricacies of various printing parameters on mechanical behaviour of additively constructed concrete

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Extrusion-based three-dimensional (3D) printing has seen rapid growth in the last few years, including in the construction sector owing to its reduced construction cost, minimal labour intervention, freeform design, implementation of complex architectural structural design and more. However, like other technologies, additive construction or 3D concrete printing has several limitations such as additional requirement of printing performance of the material along with hardened mechanical properties, construction challenges of the additive construction in the case of large-scale reinforced concrete structures, accuracy and performance of the digital 3D print model are the few. Moreover, the lack of understanding about the effect of various printing-related parameters on the load capacity of additively manufactured structural element is another barier in the popularisation of such technology. Consequently, in this article, a finite-element (FE)-based framework is utilised and the load–deflection of additively constructed concrete beam under 4-point loading is simulated. In the model, measured geometrical specifications of additively manufactured specimen (length and sectional curvatures, varying width and thickness at different layers along the beam depth), are utilised. Each concrete filament is modelled using coupled damage-plasticity-based material behaviour, whereas cohesive zone-based constitutive behaviour is used to represent the interfacial bond characteristics between two printed filaments. In the model, the input properties such as mechanical properties of concrete (e.g. compressive and tensile strength) and the tensile bond strength value of the interfaces are obtained from the respective experiments conducted. A detailed sensitivity analysis for the various printing-related parameters, e.g. tensile and shear bond strength, bond stiffness, plastic or failure displacement of bond, pores or gaps that exist between two consecutive printed filament and the number of printed layers, have been conducted. In the simulation, one parameter at a time is varied keeping all other fixed and the resultant effect on the load–deflection behaviour is analysed. The simulated results of the concrete specimen for various above-mentioned printing parameters are also compared with the results obtained from the perfect bond condition. Consequently, simplified statistically fitted relations are proposed that helps in quick evaluation of the variability in load-carrying capacity of additively constructed concrete beam for variable bond or printing conditions. The results of such studies would be helpful for the research community in the design and prediction of load capacity of additively manufactured concrete beam.
Rocznik
Strony
art. no. e41, 2024
Opis fizyczny
Bibliogr. 56 poz., rys., wykr.
Twórcy
autor
  • CSIR-Central Building Research Institute, Roorkee, Uttarakhand 247667, India
  • CSIR-Central Building Research Institute, Roorkee, Uttarakhand 247667, India
  • CSIR-Central Building Research Institute, Roorkee, Uttarakhand 247667, India
Bibliografia
  • 1. Kaikai X, Yadong G, Qiang Z. Comparison of traditional processing and additive manufacturing technologies in various performance aspects: a review. Arch Civ Mech Eng. 2023;23:1–28.
  • 2. Liu H, Liu C, Wu Y, Bai G, He C, Zhang R, Wang Y. Hardened properties of 3D printed concrete with recycled coarse aggregate. Cem Concr Res. 2022. https://doi.org/10.1016/j.cemconres.2022.106868.
  • 3. Buswell RA, De Silva WRL, Jones SZ, Dirrenberger J. 3D printing using concrete extrusion: a road map for research. Cem ConcrRes. 2018;112:37–49.
  • 4. Paul SC, Van Zijl GPAG, Tan MJ, Gibson I. A review of 3D concrete printing systems and materials properties: current status and future research prospects. Rapid Prototyp J. 2018;24:784–98.
  • 5. El-Sayegh S, Romdhane L, Manjikian S. A critical review of 3D printing in construction: Benefits, challenges, and risks. Arch CivMech Eng. 2020;20:1–25.
  • 6. Nguyen-Van V, Nguyen-Xuan H, Panda B, Tran P. 3D concrete printing modelling of thin-walled structures. In: Structures.Amsterdam: Elsevier; 2022. p. 496–511.
  • 7. Duarte G, Duarte JP, Memari A, Brown N, Gevaudan JP. Towards a model for structural performance in concrete printing based on buildability and toolpath design. J Build Eng. 2023;69: 106325.
  • 8. Xu Z, Zhang D, Li H, Sun X. Effects of the distribution of solid particles on the rheological properties and build a bility of 3DPM fresh pastes with different FA/GGBFS content. Arch Civ MechEng. 2023;23:82.
  • 9. Wolfs RJM, Bos FP, Salet TAM. Hardened properties of 3Dprinted concrete: the influence of process parameters on inter-layer adhesion. Cem Concr Res. 2019;119:132–40.
  • 10. Liu H, Liu C, Wu Y, Bai G, He C, Zhang R, Wang Y. Hardened properties of 3D printed concrete with recycled coarse aggregate. Cem Concr Res. 2022;159: 106868.
  • 11. Sun B, Li P, Wang D, Ye J, Liu G, Zhao W. Evaluation of mechanical properties and anisotropy of 3D printed concreteat different temperatures. Structures. 2023;51:391–401. https://doi.org/10.1016/j.istruc.2023.03.045.
  • 12. Zhu L, Zhang M, Zhang Y, Yao J, Yang G, Guan X, Zhao Y.Research progress on shrinkage properties of extruded 3Dprinted cement-based materials. J Build Eng. 2023;77:107394.https://doi.org/10.1016/j.jobe.2023.107394.
  • 13. Li Q, Gao X, Su A, Lu X. Interlayer adhesion strength of 3D-printed cement-based materials exposed to varying curing conditions. J Build Eng. 2023;74: 106825.
  • 14. Wang Y, Qiu L, Hu Y, Chen S, Liu Y. Influential factors on mechanical properties and microscopic characteristics of under-water 3D printing concrete. J Build Eng. 2023;77:107571.https://doi.org/10.1016/j.jobe.2023.107571.
  • 15. Roussel N, Cussigh F. Distinct-layer casting of SCC: the mechanical consequences of thixotropy. Cem Concr Res.2008;38:624–32.
  • 16. Le TT, Austin SA, Lim S, Buswell RA, Law R, Gibb AGF,Thorpe T. Hardened properties of high-performance printing concrete. Cem Concr Res. 2012;42:558–66.
  • 17. Panda B, Paul SC, Mohamed NAN, Tay YWD, Tan MJ. Measurement of tensile bond strength of 3D printed geopoly mermortar. Measurement. 2018;113:108–16.
  • 18. Tay YWD, Ting GHA, Qian Y, Panda B, He L, Tan MJ. Timegap effect on bond strength of 3D-printed concrete. Virtual PhysPrototyp. 2019;14:104–13.
  • 19. Sanjayan JG, Nematollahi B, Xia M, Marchment T. Effect of surface moisture on inter-layer strength of 3D printed concrete.Constr Build Mater. 2018;172:468–75.
  • 20. Keita E, Bessaies-Bey H, Zuo W, Belin P, Roussel N. Weakbond strength between successive layers in extrusion-based additive manufacturing: measurement and physical origin. Cem Concr Res. 2019;123: 105787.
  • 21. Liu C, Wang Z, Wu Y, Liu H, Zhang T, Wang X, Zhang W. 3D printing concrete with recycled sand: the influence mechanism of extruded pore defects on constitutive relationship. J BuildEng. 2023;68: 106169.
  • 22. Chen W, Pan J, Zhu B, Ma X, Zhang Y, Chen Y, Li X, MengL, Cai J. Improving mechanical properties of 3D printable ‘one-part’ geopolymer concrete with steel fiber reinforcement.J Build Eng. 2023;75:107077. https:// doi. org/ 10. 1016/j. jobe.2023.107077.
  • 23. Deng Z, Jia Z, Zhang C, Wang Z, Jia L, Ma L, Wang X, ZhangY. 3D printing light weight aggregate concrete prepared with shell-packing-aggregate method-printability, mechanical properties and pore structure. J Build Eng. 2022;62: 105404.
  • 24. Kruger J, van Zijl G. A compendious review on lack-of-fusionin digital concrete fabrication. Addit Manuf. 2021;37: 101654.
  • 25. van den Heever M, du Plessis A, Kruger J, van Zijl G. Evaluating the effects of porosity on the mechanical properties of extrusion-based 3D printed concrete. Cem Concr Res. 2022.https://doi.org/10.1016/j.cemconres.2021.106695.
  • 26. Singh A, Liu Q, Xiao J, Lyu Q. Mechanical and macrostructural properties of 3D printed concrete dosed with steel fibers under different loading direction. Constr Build Mater. 2022. https://doi.org/10.1016/j.conbuildmat.2022.126616.
  • 27. Paul SC, Tay YWD, Panda B, Tan MJ. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Arch Civ Mech Eng. 2018;18:311–9.
  • 28. Zareiyan B, Khoshnevis B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Autom Constr. 2017;83:212–21.
  • 29. Panda B, Paul SC, Hui LJ, Tay YWD, Tan MJ. Additive manufacturing of geopolymer for sustainable built environment. J CleanProd. 2017;167:281–8.
  • 30. Ma G, Li Z, Wang L, Wang F, Sanjayan J. Mechanical anisot-ropy of aligned fiber reinforced composite for extrusion-based 3Dprinting. Constr Build Mater. 2019;202:770–83.
  • 31. Yu Q, Zhu B, Li X, Meng L, Cai J, Zhang Y, Pan J. Investigation of the rheological and mechanical properties of 3D printed eco-friendly concrete with steel slag. J Build Eng. 2023;72: 106621.
  • 32. Liu M, Zhang Q, Tan Z, Wang L, Li Z, Ma G. Investigation of steel wire mesh reinforcement method for 3D concrete printing. Arch Civ Mech Eng. 2021;21:1–18.
  • 33. Alonso-Canon S, Blanco-Fernandez E, Castro-Fresno D, Yoris-Nobile AI, Castañon-Jano L. Reinforcements in 3D printing concrete structures. Arch Civ Mech Eng. 2022;23:25.
  • 34. Wang L, Jiang H, Li Z, Ma G. Mechanical behaviors of 3D printed light weight concrete structure with hollow section. Arch CivMech Eng. 2020;20:1–17.
  • 35. Feng P, Meng X, Chen J-F, Ye L. Mechanical properties of structures 3D printed with cementitious powders. Constr Build Mater.2015;93:486–97.
  • 36. Shakor P, Gowripalan N, Rasouli H. Experimental and numerical analysis of 3D printed cement mortar specimens using inkjet 3DP.Arch Civ Mech Eng. 2021;21:1–16.
  • 37. Bos FP, Bosco E, Salet TAM. Ductility of 3D printed concrete reinforced with short straight steel fibers. Virtual Phys Prototyp.2019;14:160–74.
  • 38. van den Heever M, Bester F, Pourbehi M, Kruger J, Cho S, vanZijl G. Characterizing the fissility of 3D concrete printed elements via the cohesive zone method. In: Second RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete2020, vol 2. Springer; 2020. p. 489–99.
  • 39. Xiao J, Liu H, Ding T. Finite element analysis on the anisotropic behavior of 3D printed concrete under compression and flexure. Addit Manuf. 2021;39: 101712.
  • 40. Xiao J, Li W, Corr DJ, Shah SP. Effects of interfacial transition zones on the stress-strain behavior of modeled recycled aggregate concrete. Cem Concr Res. 2013;52:82–99. https://doi.org/10.1016/j.cemconres.2013.05.004.
  • 41. Huang Y, Yang Z, Ren W, Liu G, Zhang C. 3D meso-scale fracture modelling and validation of concrete based on in-situ X-raycomputed tomography images using damage plasticity model. Int J Solids Struct. 2015;67:340–52.
  • 42. Pal B, Ramaswamy A. Meso-scale study of notched and un-notched plain concrete beam under three-point bending. In:IABSE Congress, Christchurch 2020: Resilient Technologies for Sustainable Infrastructure-Proceedings, International Association for Bridge and Structural Engineering (IABSE), 2020. p. 890–7.
  • 43. Kent DC, Park R. Flexural members with confined concrete. J Struct Div. 1971;97:1969–90.
  • 44. Massicotte B, Elwi AE, MacGregor JG. Tension-stiffening model for planar reinforced concrete members. J Struct Eng.1990;116:3039–58.
  • 45. Hafezolghorani M, Hejazi F, Vaghei R, Bin Jaafar MS, Karimzade K. Simplified damage plasticity model for concrete. Struct EngInt. 2017;27:68–78.
  • 46. Jog CS. Continuum mechanics: volume 1: foundations and applications of mechanics. Cambridge: Cambridge University Press;2015.
  • 47. Pal B, Ramaswamy A. Mechanistic analysis of cementitious composite at meso-scale. In: Singh SB, Barai SV, editors. Stability and Failure of High Performance Composite Structures. Composites Science and Technology. Singapore: Springer; 2022. p. 91–123.https://doi.org/10.1007/978-981-19-2424-8_5.
  • 48. Chen H, Xu B, Mo YL, Zhou T. Behavior of meso-scale heterogeneous concrete under uniaxial tensile and compressive loadings. Constr Build Mater. 2018;178:418–31. https://doi.org/10.1016/j.conbuildmat.2018.05.052.
  • 49. Lubliner J, Oliver J, Oller S, Oñate E. A plastic-damage model for concrete. Int J Solids Struct. 1989;25:299–326.
  • 50. Lee J, Fenves GL. Plastic-damage model for cyclic loading of concrete structures. J Eng Mech. 1998;124:892–900.
  • 51. Wang X, Yang Z, Jivkov AP. Monte Carlo simulations of mes-oscale fracture of concrete with random aggregates and pores: a size effect study. Constr Build Mater. 2015;80:262–72. https://doi.org/10.1016/j.conbuildmat.2015.02.002.
  • 52. IS:516-2013. Methods of tests for strength of concrete. NewDelhi: Bureau of Indian Standards; 2013.
  • 53. I.S. BIS, 5816-1999. Specification for splitting tensile strength ofconcrete—method of test. New Delhi: Bureau of Indian Standards;1999.
  • 54. Babafemi AJ, Kolawole JT, Miah MJ, Paul SC, Panda B. A con-cise review on interlayer bond strength in 3d concrete printing.Sustainability (Switzerland). 2021. https://doi.org/10.3390/su13137137.
  • 55. Pal B, Ramaswamy A. A multi-physics-based approach to predict mechanical behavior of concrete element in a multi-scale frame-work. Mech Mater. 2023;176: 104509. https://doi.org/10.1016/J.MECHMAT.2022.104509.
  • 56. Pal B, Ramaswamy A. A multi-scale approach to predict shrinkageand creep of cementitious composite in a hygro-thermo-chemo-mechanical framework-theoretical formulation and numerical validation. Mech Mater. 2023. https://doi.org/10.1016/j.mechmat.2023.104866.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e44832bd-818c-4284-9129-eb52353cfccf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.