PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multiple fault parameter estimation of a fully assembled turbogenerator system

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present article investigates the dynamic behavior of a fully assembled turbogenerator system influenced by misalignment. In the past, most of the researchers have neglected the foundation flexibility in the turbogenerator systems in their study, to overcome this modelling error a more realistic model of a turbogenerator system has been attempted by considering flexible shafts, flexiblecoupling, flexible bearings and flexible foundation. Equations of motion for fully assembled turbogenerator system including flexible foundations have been derived by using finite element method. The methodology developed based on least squares technique requires forced response information to quantify the bearing–coupling–foundation dynamic parameters of the system associated with different faults along with residual unbalances.The proposed methodology is tested for the various level of measurement noise and modelling error in the system parameters, i.e., 5% deviation in E (modulus of elasticity) and ρ (density), respectively, for robustness of the algorithm. In a practical sense, the condition analyzed in the present article relates to the identification of misalignment and other dynamic parameters viz. bearing and residual unbalance in a rotor integrated with flexible foundation.
Rocznik
Strony
233--252
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Department of Industrial Design, National Institute of Technology Rourkela, India
Bibliografia
  • [1] R.A. Collacott. Mechanical fault diagnosis and condition monitoring. Chapman & Hall, 1977.
  • [2] J.S. Mitchell. An introduction to machinery analysis and monitoring.: Pennwell Corp., Tulsa, Oklahoma, 1993.
  • [3] S. Edwards, A.W. Lees, and M.I. Friswell. Fault diagnosis of rotating machinery. Shock and Vibration Digest, 30(1):4–13, 1998.
  • [4] R.Tiwari. Conditioning of regression matrices for simultaneous estimation of the residual unbalance and bearing dynamic parameters. Mechanical Systems and Signal Processing, 19(5):1082– 1095, 2005. doi:10.1016/j.ymssp.2004.09.005.
  • [5] A.W. Lees, J.K. Sinha, and M.I. Friswell. Model-based identification of rotating machines. Mechanical Systems and Signal Processing, 23(6):1884–1893, 2009. doi: 10.1016/j.ymssp.2008.08.008.
  • [6] D.J. Bordoloi and R. Tiwari. Optimum multi-fault classification of gears with integration of evolutionary and SVM algorithms. Mechanism and Machine Theory, 73:49–60, 2014. doi: 10.1016/j.mechmachtheory.2013.10.006.
  • [7] A.S. Sekhar and B.S. Prabhu. Effects of coupling misalignment on vibrations of rotating machinery. Journal of Soundand Vibration, 185(4):655–671, 1995. doi: 10.1006/jsvi.1995.0407.
  • [8] M.G. Smart, M.I. Friswell, and A.W. Lees. Estimating turbogenerator foundation parameters: model selection and regularization. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 456(1999):1583–1607, 2000. doi: 10.1098/rspa.2000.0577.
  • [9] R. Provasi, G.A. Zanetta, and A. Vania. The extended Kalman filter in the frequency domain for the identification of mechanical structures excited by sinusoidal multiple inputs. Mechanical Systems and Signal Processing, 14(3):327–341, 2000. doi: 0.1006/mssp.1999.1259.
  • [10] N. Fengand E.J. Hahn. Numerical evaluation of an identification technique for flexibly supported rigid turbomachinery foundations. Australian Journal of Mechanical Engineering, 1(2):73–82, 2004. doi: 10.1080/14484846.2004.11464469.
  • [11] P. Pennacchi, N. Bachschmid, A. Vania, G.A. Zanetta, and L. Gregori. Use of modal representation for the supporting structure in model-based fault identification of large rotating machinery: part1 – theoretical remarks. Mechanical Systems and Signal Processing, 20(3):662–681, 2006. doi: 10.1016/j.ymssp.2004.11.006.
  • [12] P. Pennacchi, N. Bachschmid, A. Vania, G.A. Zanetta, and L. Gregori. Use of modal representation for the supporting structure in model-based fault identification of large rotating machinery: Part2–application to a real machine. Mechanical Systems and Signal Processing, 20(3):682–701, 2006. doi:10.1016/j.ymssp.2004.12.005.
  • [13] Y.S. Chen, Y.D. Cheng, T. Yang, and K.L. Koai. Accurate identification of the frequency response functions for the rotor–bearing–foundation system using the modified pseudo mode shape method. Journal of Sound and Vibration, 329(6):644–658, 2010. doi: 10.1016/j.jsv.2009.09.038.
  • [14] A. Heng, S. Zhang, A.C. Tan, and J. Mathew. Rotating machinery prognostics: State of the art, challenges and opportunities. Mechanical Systems and Signal Processing, 23(3):724–739, 2009. doi: 10.1016/j.ymssp.2008.06.009.
  • [15] K.L. Cavalca and E.P. Okabe. On the analysis of rotor–bearing–foundation systems, Proceedings of the IUTAM Symposium on Emerging Trends in Rotor Dynamics, New Delhi, 23-26 March, 2009, pp. 89–101, Springer 2011. doi: 10.1007/978-94-007-0020-8_8.
  • [16] M. Lal and R. Tiwari. Multi-fault identification in simple rotor–bearing–coupling systems based on forced response measurements. Mechanism and Machine Theory, 51:87–109, 2012. doi: 10.1016/j.mechmachtheory.2012.01.001.
  • [17] M. Lal and R. Tiwari. Quantification of multiple fault parameters in flexible turbo-generator systems with incomplete rundown vibration data. Mechanical Systems and Signal Processing, 41(1–2):546–563, 2013. doi: 10.1016/j.ymssp.2013.06.025.
  • [18] Y. Lei, J. Lin, Z. He, and M.J. Zuo. Are view on empirical mode decomposition in fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing, 35(1–2):108–126, 2013. doi: 10.1016/j.ymssp.2012.09.015.
  • [19] M. Yu, N. Feng, and E.J. Hahn. An equation decoupling approach to identify the equivalent foundation in rotating machinery using modal parameters. Journal of Sound and Vibration, 365:182–198, 2016. doi: 10.1016/j.jsv.2015.11.039.
  • [20] H.D. Nelson. A finite rotating shaft element using Timoshenko beam theory. ASME, Journal of Mechanical Design, 102(4):793–803, 1980. doi: 10.1115/1.3254824.
  • [21] R.W. Clough and J. Penzien. Dynamics of Structures. 2nd edition. New York, McGraw-Hill, 1993.
  • [22] K.L. Cavalca, P.F. Cavalcante, and E.P. Okabe. An investigation on the influence of the supporting structure on the dynamics of the rotor system. Mechanical Systems and Signal Processing, 19(1):157–174, 2005. doi: 10.1016/j.ymssp.2004.04.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4466c95-f4ea-4ebd-a7b5-8dbaca227b47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.