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Abstract

Complex problems involving multiple agents exhibit varying degrees of cooperation. The
levels of cooperation might reflect both differences in information as well as differences
in goals. In this research, we develop a general mathematical model for distributed, semi-
cooperative planning and suggest a solution strategy which involves decomposing the sys-
tem into subproblems, each of which is specified at a certain period in time and controlled
by an agent. The agents communicate marginal values of resources to each other, possi-
bly with distortion. We design experiments to demonstrate the benefits of communication
between the agents and show that, with communication, the solution quality approaches
that of the ideal situation where the entire problem is controlled by a single agent.

1 Introduction

The design and control of complex operations
(eg. military operations) often requires the ability
to model not only the complex dynamics of phys-
ical systems, but also the organization and flow of
information and decisions. This dimension captures
the fact that complex systems are controlled by mul-
tiple agents, each with their own information. The
behaviors of the agents will exhibit varying degrees
of cooperation that might reflect both differences in
information as well as differences in goals. Multi-
agent structures may arise because decision makers
are distributed spatially (for example, in different
terminals in a transportation operation) or function-
ally (for example, in railroads there is a division of
responsibility in the management of locomotives,
crews and boxcars). While there is considerable
literature on multiagent systems, the vast majority
of these studies lack a formal mathematical model

and do not consider either the different types of in-
formation sharing that arise in this setting, nor the
quality of information exchange. Indeed, we ad-
dress the theme of semicooperative behavior, where
different agents work together with different levels
of coordination. Cooperation is achieved using in-
formation sharing.

The decentralization of decisions among differ-
ent entities has its origins in the theory of teams
([1], [2]) where members of a team contribute to
a common objective by making decisions about dif-
ferent aspects of the system. The individual mem-
bers need not have complete information about the
entire system. A balance is struck between the
amount of information available to each member or
agent and the associated cost. The assumption in
team theory is that the individual members have no
conflict of interest. As pointed out in [3], [4] and
[5], decentralization of decisions has several advan-
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tages such as fault-tolerance and natural exploita-
tion of parallelism, scalability and reliability.

Multi-agent systems deal with the division of
tasks between multiple agents with varying levels
of communication and cooperation. Reviews and
surveys of this field are provided in [6], [7] and [8].
Multi-agent systems are classified into several ar-
chitectures such as systems with a central control
([9]), autonomous agents that follow identical poli-
cies ([10], [11], [12]), multiple agents that inter-
act and learn their own policies ([13], [14], [15]),
global world models where agents share informa-
tion by communicating to a global world model
[16] and systems where the agents explicitly com-
municate with each other [17], [18]. Cao et al.
[19] categorizes multi-agent structures based on the
method of interaction as those where interaction
is brought about via the environment (no explicit
communication), sensing (agents sense other agents
locally without explicit communication) or com-
munications (directed or broadcast intentional mes-
sages with the recipient being known or unknown
by the transmitter). The agents may also model
other agents using some kind of representation and
thereby draw inferences about the actions of other
agents.

Most of the techniques that have been devel-
oped for solving multi-agent systems estimate the
states and learn the actions of the agents using
machine-learning algorithms. These estimates are
then utilized by each agent in order to make de-
cisions. Previous work on multi-agent systems
mention different levels of cooperation between the
agents. The system may have multiple agents, but
they do not share any information as in [20]. The
system could have multiple agents, of which only
one would be active in making decisions for all
the agents at any single time [9], [21]. Other sys-
tems involve non-autonomous agents [22], some-
times with unrestricted information sharing [23].
Implicit sharing of information between agents is
also assumed in [24], [25] and [26]. Another ap-
proach allows the agents to learn the policies of
other “neighboring” agents in addition to their own
to bring about a non-direct interaction and optimal
behavior of the system as a whole [27], [15] and
[13]). Several systems such as in [28], [29], [30],
[31], [32] and [8] involve explicit communication
between the different agents in the system to bring

about coordination.

The presence of a central control is gener-
ally assumed in the closely related field of dis-
tributed problem solving ([33], [34], [35], [36],
[37]) which involves decomposing a large problem
into smaller subproblems with the division of infor-
mation and tasks. These can be either price-directed
or resource-directed. Price-directed approaches at-
tempt to determine the right price per unit activity
that consumes the resource so that the total amount
of resource is distributed optimally. Typical exam-
ples include auctioning-type market mechanisms
where prices are determined by the decisions of
independent agents ([38]) and column generation
techniques (although the pricing step requires solv-
ing a central pricing problem) as in [39] and [40].
Resource-directed techniques ([41], [42], [43]) al-
locate resources to activities first and then optimize
the activities independently.

This research extends an adaptation [44] and
[45] of a multi-agent framework, developed in the
context of large-scale freight transportation, for
decision-making where agents control resources in
a distributed way. The mathematical model uses the
dynamic resource transformation problem (DRTP)
modeling framework developed in [46] which cap-
tures a wide range of realistic, operational details.
The algorithmic strategy draws on the methods of
approximate dynamic programming [47] which has
been found to be quite successful in large, stochas-
tic fleet management problems [48], [46], [49],
[50]. The key feature of our model is the absence
of a central controller that manages the different
agents. Each agent is assumed to only control a
subset of resources, and has information about only
those resources. The agents optimize their individ-
ual objectives autonomously and share the down-
stream costs of specific decisions to other agents.
This shared information enhances the ability of the
agents to cover tasks assigned to them, by way of
improving the utility of otherwise underused re-
sources.

In this paper, we make the following contri-
butions: 1.) We develop a general, mathemati-
cal model of a multi-agent system for distributed,
semi-cooperative planning, building on the dy-
namic resource transformation problem modeling
framework. 2.) We categorize the types of informa-
tion that can be communicated between agents and
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provide a solution strategy based on approximate
dynamic programming for solving the multi-agent
model. 3.) We demonstrate experimentally that a
semi-cooperative system where the agents commu-
nicate information in the form of marginal values
of resources outperforms a system with no commu-
nication between the agents. The semi-cooperative
system demonstrates behavior approaching a sys-
tem with a single agent control and performs quite
well even when the communication between agents
is distorted.

This paper is organized as follows. In section
2, we propose a mathematical model for describing
a multi-agent system. In section 3, we describe the
various categories of information that can be com-
municated between the agents in a multi-agent sys-
tem. We discuss the solution strategy and present
the algorithm for solving the model in section 4.
Then in section 5, we describe the design of exper-
iments to test the benefit of sharing of information
among different agents and show that cooperative
behavior among agents enable the system to sig-
nificantly outperform a non-cooperative system and
achieve results closer to a system with single-agent
control. We summarize our conclusions in section
6.

2 Modeling a multi-agent system

The problem setting involves multiple agents,
each controlling a set of resources which have to be
utilized to serve demands that arise over a certain
period of time. The resources are characterized by
attributes. We define a to be a vector of attributes.
For instance,

a=




a1
a2
a3
a4


=




Time
Ownership
Location
Type




We further define,

A = Set of all possible resource attributes vectors a.

Ra = The number of resources with attribute a.

We may also model the demands as a second
layer of resources with representing the demand at-
tribute space and b denoting the vector of demand
attributes. For instance,

b =




b1
b2
b3
b4
b5




=




Time
Ownership
Location
Type
Expiration




Even though we make no further mention of
demands in the context of attributes or attribute
spaces, all the elements of the modeling process that
we discuss in regard to resources are applicable to
demands as well.

Our solution strategy involves dividing the
problem into subproblems, with each subproblem
specified by a time index and an agent. The agents
are numbered in a pre-specified order. We may de-
fine the following terms:

Q = The set of subproblems.

Aq = The subset of attribute space A for subproblem
q.

Rq = The state of the system corresponding to sub-
problem q

= (Ra)a∈Aq

The state of the system is altered by two kinds
of information processes - exogenous and endoge-
nous. Exogenous information refers to that which
arrives from outside the system. This could simply
be the number of new resources entering the system.
We use a to denote the number of resources with at-
tribute a that enter the system. q would denote the
vector of resources of different types entering sub-
problem q.

Endogenous information refers to decisions to
act on the resources, which can change the at-
tributes of the resources. We let q denote the set of
decisions available to subproblem q. We also define
the following:

cad = The contribution from applying decision d on
resource with attribute vector a.

xad = The number of times decision d is used to act
on a resource with attribute vector a.

xq = The vector of decisions taken in subproblem
q,

= (xad)a∈Aq,d∈Dq
.

We also define Cq(Rq,xq) as the contribution func-
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tion that captures the total rewards from implement-
ing the decisions in subproblem q, Cq(Rq,xq) =

∑a∈Aq ∑d∈Dq cadxad .
It is useful to have notation that expresses the mod-
ification undergone by a resource that is acted upon
by a decision. We do this using, a’ = aM(a,d). We
refer to aM as the attribute transition function. We
may also define the indicator function,

δa′(a,d)=
{

1 i f a’ = aM(a,d),

0 otherwise.
In this context, it is useful to give formal def-

initions of the forward-reachable set (
−→
Mq) and the

backward-reachable set (
←−
Mq) as described in [45]:

−→
Mq =

{
q′ ∈ |∃ a ∈q,d ∈q

}
Such that a′ ∈q′ and

where, a′ = aM(a,d) and q′ is a reachable subprob-
lem. Indeed, we will have

←−
Mq =

{
q′ ∈ |q ∈ −→

Mq′
}
.

Figure 1. Illustration of forward- and
backward-reachable sets.

In figure 1, we illustrate the idea of forward-
reachable and backward-reachable sets. For exam-
ple, as per the illustration, decisions taken on re-
sources in subproblems 2, 3 and 4 alter their at-
tributes so as to produce resources with attributes
corresponding to subproblem 7. Hence, those
subproblems (2, 3 and 4) would constitute the
backward-reachable set,

←−
M7, with respect to sub-

problem 7. Similarly, decisions used upon re-
sources in subproblem 7 transform them to re-
sources belonging to subproblems 11, 14 and 16,
which comprise the forward-reachable set corre-
sponding to subproblem 7.

Using the notion of the forward-reachable set,
we may further define,

The vector of decisions taken in subproblem q that
results in resources with attributes corresponding to
subproblem q′ ∈ −→

Mq,

(xad)a∈q,d∈q
such that a′ ∈q′ where a′ = aM(a,d).

(
xqq′

)
q′∈−→Mq

.

We denote by q the set of feasible deci-
sions that have to satisfy the following constraints:
∑d∈q xad = Ra ∀a ∈q,

∑a∈q xad ≥ RD
bd

∀d ∈D
q ,

xad ≥ 0 ∀a ∈q,d ∈q . Equation (2) is the flow con-
servation constraint for resources. Equation (2)
constrains the system so that each demand is cov-
ered only once. Here, D

q is the set of decisions (in
subproblem q) to cover a demand such that for each
d ∈D, there exists a demand attribute vector bd ∈q,
where q is the set of demand attribute state vectors.
RD

bd
denotes the number of demands with attribute

vector bd .

Next, we introduce the notion of a policy π
which is a rule for choosing a decision given the
information available. We use Π to denote the set
of all policies. Decisions are made using a deci-
sion function which we represent using Xπ

q (Rq) and
which is a function returning a feasible decision
vector xq under a policy π.

We typically have a family of decision func-
tions, where for π ∈ Π, Xπ

q is a particular decision
function. Our challenge is to choose the best deci-
sion function.

Our optimization problem involves finding
the best decision function Xπ

q (Rq) that solves
maxπ∈ΠE

{
∑q∈Cq

(
Rq,Xπ

q (Rq)
)}

. A myopic pol-
icy would solve this problem by stepping through
the series of subproblems, q ∈, optimizing over the
current contributions alone.

3 Categories of information

Allowing information sharing between agents
in a multi-agent system brings into the picture the
cost of communication and reliability. The extent
to which information is shared between agents is
determined by the benefits obtained by each agent
as a result. It also depends on the system architec-
ture. The multi-agent system could be cooperative,
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where the agents share a common goal, or semi-
cooperative, where each agent sees its own rewards.
Communication between agents could resolve con-
flicts that might arise in situations where resources
controlled by different agents are substitutes of each
other, for completing a certain task. For exam-
ple, a task could be assigned to the resource that
is physically nearest to it. In another setting, differ-
ent agents control resources that are complements
in that each resource contributes a different quality
or skill necessary to complete a particular task. In
such a situation, communication becomes essential.
In this section, we categorize the information that
could be communicated between agents.

3.1 Knowledge

Knowledge refers to information in the form of
data such as the resource classes and their attributes,
parameters that govern the physics of the system
(for example, costs associated with an action) or
functional knowledge which includes functions that
enable the decision-maker to make inferences about
uncertain quantities.

The different agents in the system may not
necessarily share information, but they could have
knowledge about the resources belonging to other
agents and the actions that they are capable of tak-
ing [51]. Other work such as [52], [53] and [54]
also use prior knowledge to coordinate agents in the
systems. Examples of forms of knowledge commu-
nicated include sensory information [29],[8] and re-
source availabilities [28]. The paper [31]describes
a system where there is explicit communication
of commands, parameter setup and assignment of
tasks to agents involved in a search operation. The
agents communicate with each other regarding for-
mation of teams to undertake the task collectively.
Other search and surveillance procedures involve
communication of search routes [32], locations of
observed targets [30], [29] and results of sensor ac-
tions in addition to UAV locations [55].

3.2 Forecasts of exogenous information
processes

These are endogenously created forecasts of ex-
ogenous events. We use Ω to denote the set of
these forecasts. Classic deterministic rolling hori-
zon models use point forecasts (where |Ω| = 1),

whereas stochastic optimization models make use
of distributional forecasts. One agent can commu-
nicate its own forecasts to another agent. For exam-
ple, one agent may tell another agent that they think
a storm will be developing later in the day, or that
they think an aircraft might finish its repairs and be
ready to fly.

3.3 Forecasts of the impact of decisions on
the future

There are multiple approaches to quantify the
impact of decisions made in one subproblem on
another. In stochastic programming, the impact
of a decision now on the future is captured us-
ing recourse functions, which are usually approx-
imated using Bender’s cuts [56], [57], [58], [59].
Dynamic programming uses value functions that
are computed either using classical backward tech-
niques (e.g. [60]) or using adaptive methods based
on Monte Carlo sampling in approximate dynamic
programming ([61], [62], [63]). There is a vast
range of approximation strategies that can be used
in approximate dynamic programming, effectively
drawing on the entire field of statistics [64] and ma-
chine learning. In this paper, we are particularly in-
terested in problems that involve the management
of resources, which lends itself to approximation
strategies that take advantage of the natural concav-
ity of the value function. This property has been ex-
ploited extensively in the stochastic programming
literature [65], and numerous publications in the op-
erations research literature on topics such as inven-
tory planning and transportation (see chapters 11
and 12 of [63] for an overview).

3.4 Forecasts of future decisions

Forecasts of decisions can be classified into
three types:

1. Plans - These refer to explicit forecasts of fu-
ture decisions at some level of aggregation. The
agents have to make detailed decisions to match
the plan, possibly as a penalty term (not a hard
constraint).

2. Patterns - These are forecasts of future decisions
based on the historical behavior of past deci-
sions. Patterns are usually specified at some
level of aggregation [66].
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3. Policies - These are rules that govern how deci-
sions should be made in the future. Policies are
explicit mappings of states to actions at the most
detailed levels.

Agents can communicate what they expect to
do (a plan), or information that allows others to an-
ticipate their behavior.

Papers [10], [11] and [12] describe problems
where multiple agents share the same policies, how-
ever, their behaviors may differ because of different
inputs. In [20], though there is no explicit commu-
nication, agents see the outcome of each other’s ac-
tions. The paper [53] describes a procedure where
each agent learns the frequencies of actions (in ef-
fect, policies) of other agents by observing their ac-
tions and uses that as a forecast of policies of the
other agents.

3.5 History

This refers to the information regarding the ac-
tual sequence of events which have already hap-
pened, and which an agent may (partially or fully)
communicate with other agents. Examples include
the results of a mission, the movements of a plane
that occurred yesterday, or the amount of fuel that
was used.

Historical data is used in a feedback loop to up-
date system knowledge. For example, knowing that
a mission was successful helps an agent update the
probability of success. Knowing the amount of fuel
that was used allows an agent to update his esti-
mate of how much fuel is required for a mission. A
demand forecasting model (which constitutes func-
tional knowledge) is updated using the observed de-
mand data from previous time-periods. In the case
of semi-cooperative multi-agent systems, a signifi-
cant portion of historical data could be communi-
cated to an agent by other agents such as partial
results of previous decisions (as in [67]) or actual
decisions ([68], where agents communicate speech
acts). In such a situation, there could be distortion
involved in the communication due to transmission
noise. Another possibility is that the distortion is
intentional on the part of the communicating agent.
For example, an agent that normally has an excess
of demands to serve during a certain period may in-
flate its need for extra resources to another agent.

4 Solution strategy

Our solution strategy involves formulating the
problem as a dynamic program. Classical models of
dynamic programs [60], centered around Bellman’s
optimality equation, can be solved to optimality us-
ing standard techniques. However, such techniques
encounter the classic curse of dimensionality.

4.1 Approximate dynamic programming

Our approach to overcome this is to first
formulate the post-decision state of the system,
Rx

qq′ , resulting from implementing the decision
vector, xqq′ , in subproblem q. Rx

qq′a′ =

∑a∈q ∑d∈q xadδa′(a,d) ∀q′ ∈ −→
Mq, a′ ∈q′ ,

Rx
qq′ = (Rx

qq′a′)a′∈q′ ∀q′ ∈ −→
Mq. The post-decision

state is related to the pre-decision state, Rq, by way
of the following equation, Rq = ∑q′∈←−Mq+1

Rx
q′,q+q

where q denotes the exogenous changes to the re-
source state in subproblem q and Rx

q′,q denotes the
pre-decision state of the system resulting from the
decision vector, xq′,q.

In order to capture the impact of the decisions
applied in subproblem q on future subproblems, we
define a value function associated with this change.
We let Vqq′(Rx

qq′) denote the value of being in post-
decision state, Rx

qq′ .

The next step is to replace the function
Vqq′(Rx

qq′s) with an approximation. There are a
number of strategies we can use. For our work, we
used Vqq′(Rx

qq′) =qq′ (Rx
qq′)

=∑a∈ qq′a(Rx
qq′a), where qq′a(Rqq′a) is piecewise lin-

ear and concave in Rqq′a. This approximation has
worked well in a number of fleet management prob-
lems [69], [70], [71], [48].

Figure 2 depicts the use of value function ap-
proximations to to capture the impact of decisions
applied to resources in the current subproblem on
future subproblems.
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Figure 2. Illustration of future impact of decisions.
Implementing decisions on resources in the current
subproblem has an impact on future subproblems,

that is captured using value function
approximations.

The approximation of the value function is
done using an iterative procedure. We let n de-
note the iteration counter. At iteration n, we
solve the decision problem given by xn

q(R
n
q) =

argmaxxq∈q

[
Cq(Rn

q,xq)+∑q∈−→Mq
qq′(Rx

qq′)
]

subject
to the constraints in equations (2) - (2). For this
specific application, equation (4.1) is an integer
program which can be solved using a commer-
cial solver. Let q(Rn

q) be the objective function
value obtained by solving (4.1). We can update
our value function using estimates of the derivative
of q(Rq) with respect to Rq. The updating process
can be represented using the equation, n

t−1(R
x
t−1) =

UV (n−1
t−1 (R

x
t−1),R

x,n
t−1

n
t ).

4.2 The basic algorithm

The algorithmic strategy for solving the multi-
agent problem is outlined in figure 3. We start
with some initial approximation of the value func-
tions for the various states. We then iteratively step
through the subproblems and solve each one based
on the current approximations of the value func-
tions. We define the marginal value of a resource as
the value of having an additional unit of a resource
of that particular type in the system. The solutions
to each subproblem give a set of marginal values,
which are then used to update the value function
approximations of agent q and also other agents in
the backward reachable set

←−
Mq. We terminate the

simulation based on some stopping criterion, such

as some margin of improvement of the overall ob-
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{
qq′(.)

}
q,q′ (see equation

(4.1)). In an idealized situation, the marginal values
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of Figure 3.

In semi-cooperative systems, when the informa-
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5 Experimental Results
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of 12 hours. Each agent needs to use its resources
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where q denotes the exogenous changes to the re-
source state in subproblem q and Rx

q′,q denotes the
pre-decision state of the system resulting from the
decision vector, xq′,q.

In order to capture the impact of the decisions
applied in subproblem q on future subproblems, we
define a value function associated with this change.
We let Vqq′(Rx

qq′) denote the value of being in post-
decision state, Rx
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The next step is to replace the function
Vqq′(Rx

qq′s) with an approximation. There are a
number of strategies we can use. For our work, we
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Step 0. Initialization:

Step 0a. Initialize
{0

q(Rq)
}
,q ∈ .

Step 0b. Set n = 1.

Step 0c. Set the starting state - R1
0.

Step 1. For q = 1,2, . . . , ||:

Step 1a. Solve, xn
q = argmaxxq∈q

[
C(Rn

q,xq)+∑n−1
q′∈−→Mq

qq′
(

Rx
qq′

)]
,sub jectto :

∑d∈q
xad = Ra ∀a ∈q,xad ≥ 0 ∀a ∈q,d ∈q,where, f oreachq’ ∈ −→

Mq, the elements of Rx
qq′ are computed using,

Rx
qq′a′ = ∑a∈q ∑d∈q

xadδa′(a,d) ∀ a′ ∈q′ .

Step 1b. Obtain the dual variables {πn
qq′q′∈−→Mq

∪
{q}} from constraints (4.2) and (4.2).

Step 1c. Update the state for the subsequent subproblem:

Rn
q+1 = ∑q′∈←−Mq+1

Rx,n
q′,q+1+

n
q+1,whereRx,n

q′,q+1 =
(

Rx,n
q′,q+1,a

)
a∈q+1

and Rx,n
q′,q+1,a is obtained using a similar expres-

sion as in equation (4.2).

Step 2. For q = 1,2, . . . , || , define the updating vector, n
q =

(
πn

qq′

)
q′∈−→Mq

.

Update the value function approximations with appropriately chosen stepsizes, αn, n
q(Rq) = (1−αn)n−1

q (Rq)+
αnn

q ∀q ∈ .

Step 3. Let n = n+1. If n ≤ N, go to step 1.

Step 4. Return the value function estimates,
{n

q(Rq)
}

q∈.

Figure 3. An ADP algorithm for multi-agent systems.

to serve the demands, within a certain time win-
dow after which the demands expire. A reward is
obtained when a demand is served. The resources
and demands are characterized by types. A demand
of a particular type has to be served by a resource
of a certain type, otherwise a substitution cost is
incurred. There is also a cost incurred if a demand,
after arrival, has to wait for multiple time periods
before being served.

The resource attribute vector has the following
dynamic elements - current time, current location
and controlling agent, as well as the static elements
of resource-type and ownership (which refers to the
agent that owns the resource). Demands have the
attributes of time, location, expiration time, type
and ownership of which time is the only dynamic
attribute. Demands disappear from the system if
they are not served before their expiration time.
Figure 4 gives an illustration of demands arising at
different points in time over the simulation horizon.
Each column represents the number of demands,
colored by agent, that arise during that time period.
The distribution of demands over time among the
three agents is such that in almost every time pe-

riod there is always some agent with an excess of
demands. In this setting, semi-cooperative sharing
of resources between the agents could improve the
overall demand coverage.

Figure 4. Distribution of demands in a 3-agent
system. Demands are unequally distributed among
the agents in different time periods, creating a need
for resource-sharing or demand-sharing among the

agents.

In each subproblem, the following list of deci-
sions are available for the decision-maker:
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– Hold resource or demand - Both resources and
demand can be held at their current location.
Holding a demand results in a cost that is pro-
portional to the time it is held since its arrival at
the location. Furthermore, a demand can be held
only until it expires.

– Move resource - Resources can be moved to
other locations at a cost, where demands may be
more likely to arise.

– Serve demand - Resources can be used to serve
demands, which results in a reward. If there is
a type mismatch between the resource and the
demand, a substitution cost is incurred. The
other costs incurred with this decision include
the transportation cost of moving the resource to
the demand location as well as the waiting cost
for the demand which is proportional to the time
it has to wait before being served.

– Transfer control - Agents may choose to bor-
row resources of another agent while incurring
a cost, in the event of a deficit of resources un-
der their control to serve demands.

5.1 Value of communication

In this section, we evaluate the benefits of
communication between agents. In the semi-
cooperative system, the communication is in the
form of marginal values (πqq′) of resources as out-
lined in Section 4.

Figures 5 and 6 contrast the behavior with and
without communication in a 2-agent system. In this
configuration, agent 1 has an excess of demands
while agent 2 has a surplus of resources, most
of which remain under-utilized in the absence of
communication (Figure 5). In the semi-cooperative
system, agent 1 communicates the marginal values
of resources to agent 2 which causes the latter to
lend its resources to the former, thereby resulting in
greater demand coverage as depicted in Figure 6.

Figure 5. A snapshot of the 2-agent system for a
particular time period. In this scenario, there is no

communication between agents. Much of the
resources remain unutilized as a result of lack of

cooperative behavior.

Figure 6. The 2-agent system with cooperative
behavior. The resources that were previously

unutilized are now being used to cover the excess
demands.

In Figure 7, we analyze the percentage of de-
mands successfully served by multi-agent system
architectures with and without communication, as a
function of the number of iterations of the algorithm
in Figure 3. As a benchmark, we also perform the
tests on a single agent system with the same num-
ber of resources. As is evident from the graph,
allowing for communication (and hence, transfer of
resources), between the agents allows for a much
better coverage of the demands, matching that of
the single agent system.

Agent 2 using its resources to cover demands belonging to agent 1

WITH COMMUNICATION

Unused resources belonging to agent 2

Resources belonging to agent 1
are moved around to cover demands

NO COMMUNICATION
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agent that owns the resource). Demands have the
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attribute. Demands disappear from the system if
they are not served before their expiration time.
Figure 4 gives an illustration of demands arising at
different points in time over the simulation horizon.
Each column represents the number of demands,
colored by agent, that arise during that time period.
The distribution of demands over time among the
three agents is such that in almost every time pe-

riod there is always some agent with an excess of
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In each subproblem, the following list of deci-
sions are available for the decision-maker:



210 A. Boukhtouta, J. Berger, A. George, W. B. Powell

Table 1. Percentage of demands served for several problem instances. TW and LC denote parameter
settings. The remaining columns represent the competing system architectures - SA (Single agent), MAC

(Multi-agent semi-cooperative) and MANC (Multi-agent with no communication)

No. Agents TW LC SA MAC MANC
1 2 No Yes 19 17 9
2 2 Yes Yes 31 29 14
3 2 No No 66 68 39
4 2 Yes No 90 78 72
5 2 Yes No 94 76 66
6 3 No Yes 26 22 15
7 3 Yes Yes 63 51 37
8 3 No No 98 90 68
9 3 Yes No 100 96 87

Figure 7. Percentage of demands served for
different system architectures.

Table 1 provides a summary of the percentage
of demands served for different problem instances.
We varied three parameter settings to generate the
different instances. The first one was the number
of agents in the system. The second setting, TW
(time-windows), involved whether or not to allow
the demands to be held for more than a single time-
period. The final setting, LC, denotes whether or
not we impose a location constraint where a re-
source could serve a demand only if it is in the
same location. In all the problem instances, the
semi-cooperative model with communication con-
sistently outperforms the multi-agent system with
no communication and also approaches the single
agent architecture in terms of performance.

5.2 Effect of distortion

In this section, we investigate the effect of dis-
tortion in the information that is communicated
between the agents in a semi-cooperative model.

The marginal values of resources are inflated and
noise is added before they are communicated to
other agents. As expected, this results in a solu-
tion which is poorer in quality as compared to the
case where there is no distortion in the communi-
cation. However, the semi-cooperative system with
distorted communication still outperforms the sys-
tem with no communication between the agents, as
illustrated in Figure 8.

Figure 8. Effect of distortion in information
communicated.

6 Conclusions

We have developed a multi-agent system where
the agents are autonomous, but demonstrate semi-
cooperative behavior to achieve a common objec-
tive of maximizing demand coverage. Each agent
possesses ownership of a certain number of re-
sources. During the course of the simulation, in-
formation regarding the future value of resources is
communicated between the agents. This is used by
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source could serve a demand only if it is in the
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agent architecture in terms of performance.

5.2 Effect of distortion

In this section, we investigate the effect of dis-
tortion in the information that is communicated
between the agents in a semi-cooperative model.

The marginal values of resources are inflated and
noise is added before they are communicated to
other agents. As expected, this results in a solu-
tion which is poorer in quality as compared to the
case where there is no distortion in the communi-
cation. However, the semi-cooperative system with
distorted communication still outperforms the sys-
tem with no communication between the agents, as
illustrated in Figure 8.

Figure 8. Effect of distortion in information
communicated.

6 Conclusions

We have developed a multi-agent system where
the agents are autonomous, but demonstrate semi-
cooperative behavior to achieve a common objec-
tive of maximizing demand coverage. Each agent
possesses ownership of a certain number of re-
sources. During the course of the simulation, in-
formation regarding the future value of resources is
communicated between the agents. This is used by
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the agents to determine whether or not to transfer
control of under-utilized resources to other agents,
thereby maximizing the overall number of demands
served by the system. Our experimental results
show that this type of semi-cooperative behavior
improves the objective function compared to a sys-
tem where the agents act independently with no co-
operation. With no distortion in the values commu-
nicated, the system performance approaches that of
a system where there is a single agent controlling
all the resources. Even with distorted information
being communicated, the semi-cooperative sys-
tem still outperforms the system with independent
agents. The advantage that the semi-cooperative
system has over the single agent system is that the
decision problems are much smaller in size due to
decentralization, but we are still able to obtain re-
sults that are near-optimal.
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