Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
There is a consensus in signal processing that the Gaussian kernel and its partial derivatives enable the development of robust algorithms for feature detection. Fourier analysis and convolution theory have a central role in such development. In this paper, we collect theoretical elements to follow this avenue but using the q-Gaussian kernel that is a nonextensive generalization of the Gaussian one. Firstly, we review the one-dimensional q-Gaussian and its Fourier transform. Then, we consider the two-dimensional q-Gaussian and we highlight the issues behind its analytical Fourier transform computation. In the computational experiments, we analyze the q-Gaussian kernel in the space and Fourier domains using the concepts of space window, cut-o frequency, and the Heisenberg inequality.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
16--44
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
Bibliografia
- [1] A.K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, Inc., 1989.
- [2] R.C. Gonzalez. Digital Image Processing. Reading Addison-Wesley, 1992.
- [3] C. Lopez-Molina, B. De Baets, H. Bustince, Sanz J., and E. Barrenechea. Multiscale edge detection based on gaussian smoothing and edge tracking. Knowledge-Based Systems, 44:101-111, 2013. DOI: 10.1016/j.knosys.2013.01.026.
- [4] L.M.J. Florack, B.M. ter Haar Romery, J. Koenderink, and M.A. Viergever. Scale and the differential structure of images. Image Vis. Comput., 10(6):376-388, 1992. DOI: 10.1016/0262-8856(92)90024-W.
- [5] J. Koenderink. The structure of images. Biol. Cybern., 50:363-370, 1984. DOI:10.1007/BF00336961.
- [6] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell, 12(7):629-639, 1990. DOI: 10.1109/34.56205.
- [7] R. L. Liboff. Kinetic Theory: Classical, Quantum, and Relativistic Descriptions. Computational Imaging and Vision. Prentice-Hall International Editions, 1990.
- [8] C. Tsallis. Introduction to Nonextensive Statistical Mechanics: approaching a complex world. Springer, 2009. DOI: 10.1007/978-0-387-85359-8.
- [9] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys., 52(1):479-487, 1988. DOI: 10.1007/BF01016429.
- [10] C. Tsallis, S.V.F. Levy, A.M.C. Souza, and R. Maynard. Statistical-mechanical foundation of the ubiquity of Levy distributions in Nature. Phys. Rev. Lett., 75(20):3589-3593, 1995. DOI: 10.1103/PhysRevLett.75.3589.
- [11] L Assirati, N R Silva, L Berton, A A Lopes, and O M Bruno. Performing edge detection by difference of gaussians using q-gaussian kernels. Journal of Physics: Conference Series, 490(1), 2014.
- [12] C. Gallao and P.S. Rodrigues. A q-gaussian spatial filtering. In WVC 2015: Proc. of the XI Workshop de Viso Computacional, Sao Carlos, SP, Brazil, 2015.
- [13] E.P. Borges, C. Tsallis, J.G.V. Miranda, and R.F.S. Andrade. Mother wavelet functions generalized through q-exponentials. J. Phys. A: Math. General, 37(39):9125+, 2004. DOI: 10.1088/0305-4470/37/39/006.
- [14] E.P. Borges. On a q-generalization of circular and hyperbolic functions. J. Phys. A: Math. General, 31(23):5281, 1998. DOI: 10.1088/0305-4470/31/23/011.
- [15] R. Diaz and E. Pariguan. On the gaussian q-distribution. J. Math. Anal. Appl., 358(1):1-9, 2009. DOI: 10.1016/j.jmaa.2009.04.046.
- [16] A.F. Nikiforov and V.B. Uvarov. Special Functions of Mathematical Physics. A Unified Introduction with Applications. Birkhauser, Basel, Boston, 1988.
- [17] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products. Elsevier/Academic Press, Amsterdam, seventh edition, 1981.
- [18] C. Tsallis. Nonextensive statistics: Theoretical, experimental and computational evidences and connections. Braz. J. Phys., 29(1), 1999. DOI: 10.1590/S0103-97331999000100002.
- [19] C. Tsallis, R. Mendes, and A.R. Plastino. The role of constraints within generalized nonextensive statistics. Physica A, 261(3-4):534-554, 1998. DOI: 10.1016/s0378-4371(98)00437-3.
- [20] C. Tsallis. What are the numbers that experiments provide? Quim. Nova, 17(6):468-471, 1994.
- [21] S. Umarov and C. Tsallis. Multivariate Generalizations of the q-Central Limit Theorem. 2007. arXiv:cond-mat/0703533.
- [22] P.S.S. Rodrigues and G.A. Giraldi. Fourier analysis and q-gaussian functions: Analytical and numerical results. 2016. arXiv:1605.00452.
- [23] D.G Lowe. Object recognition from local scale-invariant features. In Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, volume 2, pages 1150-1157, 1999. DOI: 10.1109/ICCV.1999.790410.
- [24] D.G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis., 60(2):91-110, 2004. DOI: 10.1023/B:VISI.0000029664.99615.94.
- [25] P.S. Rodrigues and G.A. Giraldi. Computing the q-index for Tsallis nonextensive image segmentation. In 2009 XXII Brazilian Symposium on Computer Graphics and Image Processing, pages 232-237, 2009.
- [26] C.K. Chui. An Introduction to Wavelets. New York Academic Press, 1992.
- [27] M. Jauregui and C. Tsallis. q-Generalization of the inverse Fourier transform. Phys. Lett. A, 375(21):2085 - 2088, 2011. DOI: 10.1016/j.physleta.2011.04.014.
- [28] E.K Lenzi, E.P. Borges, and R.S. Mendes. A q-generalization of Laplace transforms. J. Phys. A: Math. General, 32(48), 1999. DOI: 10.1088/0305-4470/32/48/314.
- [29] D. Gabor. Theory of communication. J. Inst. Elect. Eng. (London), 93, 1946.
- [30] J.B. Filho. Funcoes Especiais. Papirus, 1986.
- [31] E.P. Borges. Manifestações Dinamicas e Termodinamicas de Sistemas Não-Extensivos. PhD thesis, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ, Brasil, 2012.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e438c8f0-1047-4a0f-9e3c-5f487557119b