PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of UVA-LED concentric glass tube microreactor and evaluation of photocatalysis with simultaneous adsorption and hydrodynamic cavitation for fluorescent dye degradation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A slurry UVA-LED concentric glass tube reactor (CGTR) with micro-depthof 2 mm was designed for plug flow behaviour (length/effective diameter = 150). The reactor design considered uniform radial concentration and hydrodynamic cavitation. The 100% Acridine Orange dye (3.77×10-5 M) was removed within 35 min at the graphene oxide dose of 0.3 g/dm3 and initial pH 11. It was observed that hydrodynamic cavitation shortened the reaction time and enhanced the apparent reaction rate constant from 0.022 to 0.109 min-1. Further, the degradation pathway showed that decolourized dye solution consisted of ethylenedione (34%), indicating the oxidative reaction occurred.
Rocznik
Strony
5--22
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Centre for Environmental Studies, Anna University, Guindy, Chennai – 600025, India
Bibliografia
  • [1] FUJISHIMA A., RAO T.N., TRYK D.A., Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1, 1–21. DOI: 10.1016/S1389-5567(00)00002-2.
  • [2] ULLMANN F., Triarylmethane and Diarylmethane Dyes, Ullmann’s Encyclopedia of Industrial Chemistry, 6th Ed., Wiley, New York 2001. DOI: 10.1002/14356007.a27_179.
  • [3] IARC Working Group on the Evaluation of Carcinogenic Risk to Humans, Some Aromatic Amines, Organic Dyes, and Related Exposures. General Introduction to the chemistry of dyes, Lyon 2010. DOI: https://www.ncbi.nlm.nih.gov/books/NBK385442/.
  • [4] SUNDAR K.P., KANMANI S., Progression of photocatalytic reactors and its comparison, Chem. Eng. Res. Des., 2020, 154, 135–150. DOI: 10.1016/j.cherd.2019.11.035.
  • [5] TURCHI S.C., OLLIS F.D., Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack, J. Catal., 1990, 122 (1), 178–192. DOI: 10.1016/0021-9517(90)90269-P.
  • [6] MANASSERO A., SATUF M.L., ALFANO O.M., Photocatalytic reactors with suspended and immobilized TiO2. Comparative efficiency evaluation, Chem. Eng. J., 2017, 326, 29–36. DOI: 10.1016/j.cej.2017.05.087.
  • [7] KHADEMALRASOOL M., FARBOD M., TALEBZADEH M.D., The improvement of photocatalytic processes: Design of a photoreactor using high-power LEDs, J. Sci.-Adv. Mater. Dev., 2016, 1 (3), 382–387. DOI: 10.1016/j.jsamd.2016.06.012.
  • [8] BO-SEN W., HITTI Y., MACPHERSON S., ORSAT V., LEFSRUD M.G., Comparison and perspective of conventional and LED lighting for photobiology and industry applications, Environ. Exp. Bot., 2019, 171, 103953. DOI: 10.1016/j.envexpbot.2019.103953.
  • [9] LI Y., DU Q., LIU T., PENG X., WANG J., SUN J., WANG Y., WU S., WANG Z., XIA Y., XIA L., Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes, Chem. Eng. Res. Des., 2013, 91 (2), 361–368. DOI: 10.1016/j.cherd.2012.07.007.
  • [10] NGUYEN-PHAN T.-D., PHAM V.H., SHIN E.W., PAHM H.-D., KIM S., CHUNG J.S., The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites, Chem. Eng. J., 2011, 170, 226–232. DOI: 10.1016/j.cej.2011.03.060.
  • [11] LI X., YU J., WAGEH S., AL-GHAMDI A.A., XIE J., Graphene in photocatalysis: A review, Small, 2016, 12 (48), 6640–6696. DOI: 10.1002/smll.201600382.
  • [12] SIVAKUMAR M., PANDIT A.B., Wastewater treatment. A novel energy efficient hydrodynamic cavitational technique, Ultrason. Sonochem., 2002, 9, 123–131. DOI: 10.1016/S1350-4177(01)00122-5.
  • [13] SAHARAN V.K., BADVE M.P., PANDIT A.B., Degradation of Reactive Red 120 dye using hydrodynamic cavitation, Chem. Eng. J., 2011, 178, 100–107. DOI: 10.1016/j.cej.2011.10.018.
  • [14] SIBURIAN R., SIHOTANG H., LUMBAN RAJA S., SUPENO M., SIMANJUNTAK C., New route to synthesize of graphene nanosheets, Orient. J. of Chem., 2018, 34 (1), 182–187. DOI: 10.13005/ojc/340120.
  • [15] CIPLAK Z., YILDIZ N., CALIMLI A., Investigation of Graphene/Ag Nanocomposites Synthesis Parameters for Two Different Synthesis Methods, Fuller. Nanotub. Carbon Nanostructures, 2014, 23, 361–370. DOI:10.1080/1536383X.2014.894025.
  • [16] BHATTACHARJEE J., HUSSAIN S.A., BHATTACHARJEE D., Control of H-dimer formation of acridine orange using nano clay platelets, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 116, 148–153. DOI: 10.1016/j.saa.2013.07.018.
  • [17] LU C.S., MAI F.D., WU C.D., WU R.J., CHEN C., Titanium dioxide-mediated photocatalytic degradation of Acridine Orange in aqueous suspensions under UV irradiation, Dyes and Pigments, 2008, 76, 706–713. DOI: 10.1016/j.dyepig.2007.01.009.
  • [18] SOHRABI M.R., GHAVAMI M., Photocatalytic degradation of Direct Red 23 dye using UV/TiO2. Effect of operational parameters, J. Hazard. Mater., 2008, 153 (3), 1235–1239. DOI: 10.1016/j.jhazmat.2007.09.114.
  • [19] MONDAL N.K., CHAKRABORTY S., Adsorption of Cr(VI) from aqueous solution on graphene oxide (GO) prepared from graphite: equilibrium, kinetic and thermodynamic studies, Appl. Water Sci.,2020, 10 (61), 1–10. DOI: 10.1007/s13201-020-1142-2.
  • [20] QAMAR M., Photodegradation of acridine orange catalyzed by nanostructured titanium dioxide modified with platinum and silver metals, Desalin., 2010, 254 (1–3), 108–113. DOI: 10.1016/j.desal.2009.12.006.
  • [21] GHOLAMI M., SHIRZAD-SIBONI M., FARZADKIA M., YANG J.-K., Synthesis, characterization, and application of ZnO/TiO2 nanocomposite for photocatalysis of a herbicide (Bentazon), Desalin. Water Treat., 2015, 57 (29), 13632–13644. DOI: 10.1080/19443994.2015.1060541.
  • [22] AZEEZ F., AL-HETLANI E., ARAFA M., ABDELMONEM Y., NAZEER A.A., AMIN M.O., MADKOUR M., The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles, Scientific Reports, 2018, 8, 7104. DOI: https://www.nature.com/articles/s41598-018-25673-5.
  • [23] WANG X., JIA J., WANG Y., Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline, Chemical Engineering Journal, 2017, 315, 274–282. DOI: 10.1016/j.cej.2017.01.011.
  • [24] LU C.-S., MAI F.-D., WU C.-W., WU R.-J., CHEN C.-C., Titanium dioxide-mediated photocatalytic degradation of Acridine Orange in aqueous suspensions under UV irradiation, Dyes and Pigments, 2008, 76, 706–713. DOI: 10.1016/j.dyepig.2007.01.009.
  • [25] FERNANDEZ-NIEVES A., RICHTER C., DE LAS NIEVES F.J., Point of zero charge estimation for a TiO2/water interface, Progress in Colloid and Polymer Science, 1998, 110, 21–24. DOI: /10.1007%2FBFb0118041.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e436bab9-c273-4bec-baf8-aa41ac4b0bae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.