PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zones of influence for railway traffic ground-borne vibrations

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Strefy wpływów dynamicznych od ruchu kolejowego
Języki publikacji
EN
Abstrakty
EN
The article presents selected results of the assessment of the harmfulness of building vibrations and the impact of railway traffic on people staying in buildings. The research presented in the article concerns a long-term field study. Field research was conducted in various locations and with the movement of various types of rolling stock. The results were the basis for determining the zones of influence of railway vibrations on the building structure. The criteria adopted in the research were the conditions of the impact of vibrations on the structure of buildings as well as the vibration comfort for people staying in buildings and passively perceiving vibrations. The paper presents the methodology of field research and selected results from the conducted research. The proposed zones vary depending on the type of trains (freight and passenger). The range of zones also depends on the structure of the building and human perception of passively perceived vibrations. All analyses carried out for the purposes of this work are in accordance with Polish regulations and were performed by an accredited laboratory for testing vibrations and deformations of buildings. The proposed zones were adopted for use in design and diagnostic practice regarding the impact of vibrations on buildings and people in buildings.
PL
W artykule przedstawiono wybrane wyniki oceny szkodliwości wpływu drgań od ruchu kolejowego na budynki oraz na ludzi przebywających w budynkach. Badania przedstawione w artykule dotyczą długoterminowych badań terenowych. Badania terenowe przeprowadzono w różnych lokalizacjach i przy ruchu zróżnicowanego taboru kolejowego. Wyniki stanowiły podstawę do określenia stref oddziaływań drgań kolejowych. Kryteriami przyjętymi w badaniach były warunki oddziaływania drgań na konstrukcje budynków oraz warunki komfortu drgań dla ludzi przebywających w budynkach i biernie odbierających drgania. W artykule przedstawiono metodykę badań terenowych oraz wybrane wyniki przeprowadzonych badań. Proponowane strefy różnią się w zależności od rodzaju pociągów (towarowe i pasażerskie). Zasięg stref zależy również od konstrukcji budynku i percepcji człowieka biernie odbierającego drgania. Wszystkie analizy wykonane na potrzeby niniejszej pracy są zgodne z polskimi przepisami i zostały wykonane przez akredytowane laboratorium do badań drgań i odkształceń budynków. Zaproponowane strefy zostały przyjęte do stosowania w praktyce projektowej i diagnostycznej dotyczącej wpływu drgań na budynki i ludzi w budynkach.
Rocznik
Strony
339--357
Opis fizyczny
Bibliogr. 33 poz., il., tab.
Twórcy
autor
  • Cracow University of Technology, Faculty of Civil Engineering, Cracow, Poland
  • Cracow University of Technology, Faculty of Civil Engineering, Cracow, Poland
  • Cracow University of Technology, Faculty of Civil Engineering, Cracow, Poland
Bibliografia
  • [1] D.A. Vamvakaris, C.B. Papazachos, C.A. Papaioannou, E.M. Scordilis, and G.F. Karakaisis, “A detailed seismic zonation model for shallow earthquakes in the broader Aegean area”, Natural Hazards and Earth System Sciences, vol. 16, no. 1, pp. 55-84, 2016, doi: 10.5194/nhess-16-55-2016.
  • [2] M.Y. Walling and W.K. Mohanty, “An overview on the seismic zonation and microzonation studies in India”, Earth-Science Reviews, vol. 96, no. 1-2, pp. 67-91, 2009, doi: 10.1016/j.earscirev.2009.05.002.
  • [3] S. Modrzejewski, “Procedury prognozowania stref zagrożeń od robót strzałowych w górnictwie odkrywkowym”, Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie, no. 6, pp. 6-14, 2013.
  • [4] G. Kouroussis, L. Van Parys, C. Conti, and O. Verlinden, “Prediction of Ground Vibrations Induced by Urban Railway Traffic: An Analysis of the Coupling Assumptions Between Vehicle, Track, Soil, and Buildings”, International Journal of Acoustics and Vibration, vol. 18, no. 4, pp. 163-172, 2013, doi: 10.20855/ijav.2013.18.4330.
  • [5] S. François, L. Pyl, H.R. Masoumi, and G. Degrande, “The influence of dynamic soil-structure interaction on traffic induced vibrations in buildings”, Soil Dynamics and Earthquake Engineering, vol. 27, no. 7, pp. 655-674, 2007, doi: 10.1016/j.soildyn.2006.11.008.
  • [6] G. Degrande and L. Schillemans, “Free field vibrations during the passage of a Thalys high-speed train at variable speed”, Journal of Sound and Vibration, vol. 247, no. 1, pp. 131-144, 2001, doi: 10.1006/jsvi.2001.3718.
  • [7] G. Kouroussis, N. Pauwels, P. Brux, C. Conti, and O. Verlinden, “A numerical analysis of the influence of tram characteristics and rail profile on railway traffic ground-borne noise and vibration in the Brussels Region”, Science of The Total Environment, vol. 482-483, pp. 452-460, 2014, doi: 10.1016/j.scitotenv.2013.05.083.
  • [8] G. Kouroussis, D.P. Connolly, and O. Verlinden, “Railway-induced ground vibrations – a review of vehicle effects,” International Journal of Rail Transportation, vol. 2, no. 2, pp. 69-110, 2014, doi: 10.1080/23248378.2014.897791.
  • [9] G. Kouroussis, H. Mouzakis, and K. Vogiatzis, “Structural impact response for assessing railway vibration induced on buildings”, Mechanics & Industry, vol. 18, no. 8, art. no. 803, 2017, doi: 10.1051/meca/2017043.
  • [10] M. Picu and L. Picu, “Experimental Study of Road Traffic Vibrations Impact on Heritage Buildings in Braila, Romania”, in Acoustics and Vibration of Mechanical Structures - AVMS-2017. Springer, 2018, pp. 389-395, doi: 10.1007/978-3-319-69823-6_46.
  • [11] K.A. Korkmaz, Z. Ay, S.N. Keskin, and D. Ceditoglu, “Investigation of Traffic-induced Vibrations on Masonry Buildings in Turkey and Countermeasures”, Journal of Vibration and Control, vol. 17, no. 1, pp. 3-10, 2010, doi: 10.1177/1077546309346240.
  • [12] S.E. Kattis, D. Polyzos, and D.E. Beskos, “Modelling of pile wave barriers by effective trenches and their screening effectiveness”, Soil Dynamics and Earthquake Engineering, vol. 18, no. 1, pp. 1-10, 1999, doi: 10.1016/S0267-7261(98)00032-3.
  • [13] Y.-B. Yang and H.-H. Hung, “A parametric study of wave barriers for reduction of train-induced vibrations”, International Journal for Numerical Methods in Engineering, vol. 40, no. 20, pp. 3729-3747, 1997, doi: 10.1002/(SICI)1097-0207(19971030)40:20<3729::AID-NME236>3.0.CO;2-8.
  • [14] S. E. Kattis, D. Polyzos, and D.E. Beskos, “Modelling of pile wave barriers by effective trenches and their screening effectiveness”, Soil Dynamics and Earthquake Engineering, vol. 18, no. 1, pp. 1-10, 1999, doi: 10.1016/S0267-7261(98)00032-3.
  • [15] D. López-Mendoza, A. Romero, D. P. Connolly, and P. Galvín, “Scoping assessment of building vibration induced by railway traffic”, Soil Dynamics and Earthquake Engineering, vol. 93, pp. 147-161, 2017, doi: 10.1016/j.soildyn.2016.12.008.
  • [16] C.-W. Kim, M. Kawatani, and W.-S. Hwang, “Reduction of traffic-induced vibration of two-girder steel bridge seated on elastomeric bearings”, Engineering Structures, vol. 26, no. 14, pp. 2185-2195, 2004, doi: 10.1016/j.engstruct.2004.08.002.
  • [17] P. Lopes, J.F. Ruiz, P. Alves Costa, L. Medina Rodríguez, and A.S. Cardoso, “Vibrations inside buildings due to subway railway traffic. Experimental validation of a comprehensive prediction model”, Science of The Total Environment, vol. 568, pp. 1333-1343, 2016, doi: 10.1016/j.scitotenv.2015.11.016.
  • [18] M. Crispino and M. D’apuzzo, “Measurement and prediction of traffic-induced vibrations in a heritage building”, Journal of Sound and Vibration, vol. 246, no. 2, pp. 319-335, 2001, doi: 10.1006/jsvi.2001.3648.
  • [19] V. Valašková, D. Papán, and Z. Papánová, “Traffic seismicity effect on monumental buildings – results of case studies”, Journal of Measurements in Engineering, vol. 6, no. 4, pp. 210-217, 2018, doi: 10.21595/jme.2018.20413.
  • [20] S.-H. Ju, “Finite element investigation of traffic induced vibrations”, Journal of Sound and Vibration, vol. 321, no. 3-5, pp. 837-853, 2009, doi: 10.1016/j.jsv.2008.10.031.
  • [21] PN-B-02171:2017 Evaluation of vibrations influence on humans in buildings. Poland, 2017.
  • [22] PN-B-02170:2016 Evaluation of the harmfulness of buildings’ vibrations due to ground motion. Poland, 2016.
  • [23] J. Kawecki and K. Stypuła, Zapewnienie komfortu wibracyjnego ludziom w budynkach narażonych na oddziaływania komunikacyjne. Wydawnictwo Politechniki Krakowskiej, 2013.
  • [24] The “Building Law” of 7 July 1994. Poland, 1994.
  • [25] A. Kowalska-Koczwara, et al., “Vibration-Based Damage Identification and Condition Monitoring of Metro Trains: Warsaw Metro Case Study”, Shock and Vibration, vol. 2018, art. no. 8475684, 2018, doi: 10.1155/2018/8475684.
  • [26] DIN 4150-3:2016-12 Vibrations in buildings – Part 3: Effects on structures.
  • [27] C. Mouzakis, K. Vogiatzis, and V. Zafiropoulou, “Assessing subway network ground borne noise and vibration using transfer function from tunnel wall to soil surface measured by muck train operation”, Science of The Total Environment, vol. 650, pp. 2888-2896, 2019, doi: 10.1016/j.scitotenv.2018.10.039.
  • [28] A. Zbiciak, C. Kraśkiewicz, S. Dudziak, A. Al-Sabouni-Zawadzka, and J. Pełczyński, “An accurate method for fast assessment of under slab mats (USM) performance in ballastless track structures”, Construction and Building Materials, vol. 300, art. no. 123953, 2021, doi: 10.1016/j.conbuildmat.2021.123953.
  • [29] C. Kraśkiewicz, A. Zbiciak, W. Oleksiewicz, and W. Karwowski, “Static and dynamic parameters of railway tracks retrofitted with under sleeper pads”, Archives of Civil Engineering, vol. 64, no. 4, pp. 187-201, 2018, doi: 10.2478/ace-2018-0070.
  • [30] J. Sołkowski, “Efektywność wibroizolacji nawierzchni kolejowej w ujęciu analitycznym”, Zeszyty Naukowe Oddziału Stowarzyszenia Inżynierów i Techników Komunikacji w Krakowie, no. 2 (106), pp. 159-175, 2015.
  • [31] T. Kamiński and C. Machelski, “Analysis of traffic load effects in railway backfilled arch bridges”, Archives of Civil Engineering, vol. 68, no. 2, pp. 243-260, 2022, doi: 10.24425/ace.2022.140640.
  • [32] F. Pachla, B. Radecki Pawlik, K. Stypuła, and T. Tatara, “Vibration induced by railway traffic-zones of influence on buildings and humans”, Vibroengineering PROCEDIA, vol. 13, pp. 188-192, 2017, doi: 10.21595/vp.2017.19112.
  • [33] ISO 2631-2:1997 Mechanical vibration and shock – Evaluation of human exposure to whole-body vibration – Part 2: Continuous and shock-induced vibration in buildings (1 to 80 Hz).
Identyfikator YADDA
bwmeta1.element.baztech-e434aa65-d213-4101-b8e3-609340917c1b