PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seebeck phenomenon, calculation method comparison

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the article the Seebeck effect has been the main focus as well as modelling of thermoelectric phenomena observed during thermoelectric generators’ (TEG) work cycle in cogeneration systems. A simple mathematical model has been applied for calculations, and subsequently the durability environment of the Ansys computer programme for the purpose of modelling geometry and physical conditions, having assumed the starting conditions and material data. Tasks encountered in technical domains frequently require modelling of complicated geometry of real objects, applying discontinuous or differentiable functions, which enable description of physical parameters and boundary conditions. This fact imposes introduction of the model divided into a finite number of parts with relatively uncomplicated shapes that will allow obtaining a solution within their scope, and subsequently combining them with each other in the finite element method (FEM). For empirical research the generator with the marking: „56890-503 CP14, 71, 045” Laird PL26 from Laird Technologies was used. In order to determine the load characteristics there were appropriate temperatures applied to the cold and hot side of the thermoelectric generator. Subsequently, the system designed to regain energy from the heat was burdened with resistors. The final stage of the tests was installing the system in the exhaust section of the laboratory test stand at the Integrated Laboratory of the Mechatronics System of Vehicles and Construction Machinery, Warsaw University of Technology. The tests have been carried out and the abovementioned characteristics designed. Consequently, there were laboratory classes for students conducted at the test stand, illustrating the Seebeck effect.
Rocznik
Strony
63--67
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Narbutta Str. 84, 02-524 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Narbutta Str. 84, 02-524 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Narbutta Str. 84, 02-524 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Narbutta Str. 84, 02-524 Warsaw, Poland
Bibliografia
  • [1] A. Piętak, S. Radkowski, Biofuels-opportunities and challenges, Journal of KONES 18 (2011) 347–358.
  • [2] A. Piętak, S. Radkowski, Methane - a fuel for agriculture, Journal of KONES 18 (2011) 357–386.
  • [3] S. Wierzbicki, Laboratory control and system of dual-fuel compression ignition combustion engine operating in cogeneration system, Solid State Phenomea 210 (2014) 200–205.
  • [4] M. Śmieja, S. Wierzbicki, Influence of content of methane in biogas on emission of toxic substances in diesel engine supplied with bifuel, in: The 9th International Conference ENVIRONMENTAL ENGINEERING, 2014.
  • [5] K. Lubikowski, S. Radkowski, K. Szczurowski, M. Wikary, Analysis of possibility of use peltier module in task of energy scavenging, Key Engineering Materials 588 (2014) 1–11.
  • [6] M. Śmieja, S. Wierzbicki, The concept of an integrated laboratory control system for a dual - fuel diesel engine, Journal of KONES Vol. 19, No. 3 (2012) 451–458.
  • [7] E. Antonova, C. David, Finite elements for thermoelectric device analysis in ANSYS, ANSYS Release 9.0 Documentation, ANSYS Release 9.0 Documentation (2004).
  • [8] M. Lubieniecki, T. Uhl, Thermoelectric energy harvester for a smart bearing concept, Proceedings of the 13th IFToMM World Congress in mechanism and machine science (2011) 1–9.
  • [9] D. Salerno, Ultralow voltage energy harvester uses thermoelectric generator for battery-free wireless sensors, Journal of Analog Innovation 20 (2010) 1–12.
  • [10] P. Ramade, P. Patil, M. Shelar, C. Sameer, S. Yadav, S. Trimbake, Automobile exhaust thermo-electric generator design & performance analysis, International Journal of Emerging Technology and Advanced Engineering 4 (2014) 682–691.
  • [11] S. Priya, D. Inman, Energy Harvesting Technologies, Springer, 2009.
  • [12] A. Chmielewski, K. Lubikowski, S. Radkowski, K. Szczurowski, Research and simulation work of teg in cogeneration task of the exhaust system, Journal of KONES Powertrain and Transport 20 (2013) 41–47.
  • [13] Information on www.lairdtech.com.
  • [14] R. C. Kumar, A. Sonthalia, R. Goel, Experimental study on waste heat recovery from an ic engine using thermoelectric technology, Thermal science 15 (4) (2011) 1011–1022.
  • [15] S. Angrist, Direct energy conversion, 3rd Edition, Allyn and Bacon, Boston (1976) 140–166.
  • [16] P. P. Silvester, R. L. Ferrari, Finite elements for electrical engineers, 3rd Edition, University Press, Cambridge.
  • [17] L. D. Landau, E. M. Lifshitz, Electrodynamics of continuous media, 2nd Edition, Butterworth-Heinemann, Oxford.
  • [18] E. Kelner, T. E. Owen, D. L. George, A. Minachi, M. G. Nored, C. J. Schwartz, Development of a low-cost inferential natural gas energy flow rate prototype retrofit module, Topical report, for the reporting period: September 2000–January 2002, Southwest Research Institute (March 2004).
Uwagi
PL
Tytuł numeru spec. "Polish Energy Mix 2014"
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e432215c-dbca-46a9-a68d-e098dd56f630
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.