Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
System profitability analysis and carbon (IV) oxide emission saved by an indirect passive solar cabinet dryer for tomatoes drying was evaluated under Bauchi (Nigeria) prevailing weather condition. Dryer minimum annual throughput of 27.89 kg occurred in the design month of August at 180 days of drying with thermal energy output of 262.55 kWh. Financial analysis indicated a minimum annual cash flow of ₦7,826.61 for electricity energy saved with a payback period of 14.22 years which is less than the economic useful life of the dryer in the design month, while preventing 105.02 kg of carbon (IV) oxide emission. This illustrates a conventional energy cost saving method for drying high moisture crop using a cleaner form of energy. The study recommends the development and adaptation of solar dryers with auxiliary heating units for proper harnessing of solar energy for environmental sustenance and economic growth.
Czasopismo
Rocznik
Tom
Strony
37--51
Opis fizyczny
Bibliogr. 20 poz., tab., wykr.
Twórcy
autor
- Department of Mechanical/Production Engineering Faculty of Engineering and Engineering Technology Abubakar Tafawa Balewa University Bauchi, Nigeria
autor
- Department of Mechanical/Production Engineering Faculty of Engineering and Engineering Technology Abubakar Tafawa Balewa University Bauchi, Nigeria
autor
- Department of Mechanical/Production Engineering Faculty of Engineering and Engineering Technology Abubakar Tafawa Balewa University Bauchi, Nigeria
autor
- Department of Mechanical/Production Engineering Faculty of Engineering and Engineering Technology Abubakar Tafawa Balewa University Bauchi, Nigeria
autor
- Department of Mechanical Engineering School of Engineering Federal Polytechnic Mubi, Nigeria
autor
- Department of Mechanical Engineering Faculty of Engineering University of Jos Jos, Nigeria
Bibliografia
- 1. Adeaga, O.A., Dare, A.A., Odunfa, K.M. and Ohunakin, O.S. (2015). Modeling of solar drying economics using life cycle savings (L.C.S) method. Journal of Power and Energy Engineering, 3: 55-70.
- 2. Agrawal, K.K., Jain, S., Jain, A.K. and Dahiya, S. (2014). Assessment of greenhouse gas emissions from coal and natural gas thermal power plants using life cycle approach. International Journal of Environmental, Science and Technology, 11: 1157-1164.
- 3. Ahmad, F.M., Yusof Otman, Mohd Hafidz Ruslan, Muhammad Yahya, Azami Zaharim and Kamaruzzaman Sopian (2009). Techno-economic analysis of solar drying system for seaweed in Malaysia. Recent Researches in Energy, Environment and Landscape Architecture: 89-95.
- 4. Barnwal, P. and Tiwari, G.N., (2008). Life cycle cost analysis of a hybrid photovoltaic/thermal greenhouse dryer. Open Environmental Sciences, 2: 39-46.
- 5. Fudholi, A. (2006). Analisis teknoekonomi sistem hibrid angin fotovolta (SHAF) dalam memperoleh tenaga elektrik untuk rumah kediaman di Malaysia. Tesis Master, Universiti Kebangsaan Malaysia.
- 6. Kamble, A.K., Pardeshi, I.L., Singh, P.L. and Ade, G.S. (2013). Drying of chilli using solar cabinet dryer coupled with gravel bed heat storage system. Journal of Food Research and Technology, 1(2): 87-94.
- 7. Manjarekar, R.G. and Mohod, A. G. (2010). Economic evaluation of solar tunnel dryer for drying peeled prawns. International Journal of Agricultural Engineering, 3(1): 68-72.
- 8. National Renewable Energy Laboratory, NREL (2020).
- 9. Parliamentary Office of Science and Technology (2006). Carbon footprint of electricity generation. Post-Note, No. 268.
- 10. Sajith, K.G. and Muraleedharan, C. (2014). Economic analysis of a hybrid photovoltaic/thermal solar dryer for drying amla. International Journal of Engineering Research and Technology, 3(8): 907-910.
- 11. Samatcha, K., Kanokwan Kingphadung, Suphaphat Kwonpongsagoon and Mahayothee (2019). Costs and benefits of using parabolic greenhouse solar dryers for dried herb products In Thailand. International Journal of GEOMATE, 18(67): 96-101.
- 12. Sengar, S. H., Khandetod, Y.P. and Mohod, A.G. (2009). Low cost solar dryer for fish. African Journal of Environmental Science and Technology, 3(9): 265-271.
- 13. Solar Bay (2020). How much emissions does a solar power system Prevent? Solar Bay Publication Limited, New South road, Double Bay, Australia.
- 14. Solar Rating and Certification Corporation (SRCC) (2017). Information on http://www.solar-rating.org.
- 15. Sreekumar, A. (2013). Evaluation of a roof-integrated solar air heating system for drying foodstuffs. International Journal of Emerging Technology and Advanced Engineering, 3(3): 209-213.
- 16. Sujata, N., Zeba, N., Pushpendra, Y. and Ruchi, C. (2012). Economic analysis of hybrid photovoltaic-thermal (PVT) integrated solar dryer. International Journal of Engineering Inventions, 1(11): 21-27.
- 17. Tiwari, G.N and Tiwari, A.K. (2007). Solar distillation practice for water desalination systems. Anamaya Publishers. New Delhi, India.
- 18. Tiwari, G.N. (2002). Solar energy, fundamentals, design, modelling and applications. First Edition; Narosa Publishing House, New Delhi: India.
- 19. Tshewang, L. (2005). Technical and financial feasibility of a solar dryer in Bhutan. Published M.Sc Thesis, International Technologies Centre (IDTC), University of Melbourne.
- 20. World Nuclear Association, WNA (2011). Comparison of lifecycle greenhouse gas emissions of various electricity generation sources. World Nuclear Association Report. Carlton House London, United Kingdom.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e42bc1fa-e397-4f5c-9f15-651dfc3e54fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.