PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of areal density of prepreg on crashwor thiness of CFRP composite in quasi-static conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, experimental compression tests were performed in quasi-static conditions on composite specimens in the form of tubes of two different diameters (20 mm and 42 mm). The specimens were made of 3k carbon prepregs with a dry fabric areal density of 160 g/m2 and 204 g/m2, plain, and unidirectional (UD) with an areal density of 200 g/m2. The experiment determined the maximum forces (Pmax), average forces (Pi), and the value of absorbed energy (SEA). It was shown that the use of a 21% higher areal density increases the SEA by about 25% for the plain prepreg. Changing the type of prepreg from plain to UD with a similar areal density increases the SEA by 39% - 53%.
Rocznik
Strony
82--89
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
  • Rzeszow University of Technology, Aleja Powstańców Warszawy 8, 35-029 Rzeszów, Poland
Bibliografia
  • 1. Farley G.L., The effect of crushing speed on the energy - absorption capability of composite tubes, Journal of Composite Materials 1991, 25, 1314-1329, https://doi.org/10.1177/002199839102501004.
  • 2. Farley G.L., Jones R.M., Crushing characteristic of con tinuous fiber-reinforced composite tubes, Journal of Composite Materials 1992, 26, 37-50, https://doi.org/10.1177/ 002199839202600103.
  • 3. Hull D., A unified approach to progressive crushing of fibre-reinforced composite tubes, Composites Science and Technology 1991, 40, 377-421, https://doi.org/10.1016/0266-3538(91)90031-J.
  • 4. Mahdi E., Sahari B., Hamouda A., Khalid Y., An exper imental investigation into crushing behavior of filament wound laminated cone-cone intersection composite shell, Composite Structures 2001, 51, 211-219, https://doi.org/10.1016/S0263-8223(00)00132-X.
  • 5. Mamalis A., Manolakos D., Ioannidis M., Papapostolou D., On the experimental investigation of crash energy absorption in laminate splaying collapse mode of FRP tubular components, Composite Structures 2005,70, 413–429, https://doi.org/10.1016/j.compstruct.2004.09.002.
  • 6. Isaac A., Pawelczyk C.W., M., Wrona, S., Comparative study of sound transmission losses of sandwich compo site double panel walls, Appl. Sci. 2020, 10, 1543, https://doi.org/10.3390/app10041543.
  • 7. Ryzińska G., Gieleta R., Experimental studies on impact of CFRP tubes structure on amount of absorbed energy under dynamic conditions, Composites Theory and Prac tice 2018, 18, 4, 196–201.
  • 8. Ryzińska G., David M., Prusty G., Tarasiuk J., Wroński S., Effect of fibre architecture on the specific energy ab sorption in carbon epoxy composite tubes under progres sive crushing, Composite Structures 2019, 227, 2019, 111292, https://doi.org/10.1016/j.compstruct.2019.111292.
  • 9. Huang X., Lu G., Yu T.X., Energy absorption in splitting square metal tubes, Thin- Walled Structures 2002, 40, 153–165, https://doi.org/10.1016/S0263-8231(01)00058-1.
  • 10. Ramakrishna S., Hamada H., Energy absorption of crash worthy structural composite materials, Key Engineering Materials 1998, 141-143, 585-622, 10.4028/www.sci entific.net/KEM.141-143.585.
  • 11. Farley G.L., Jones R.M., Crushing characteristic of con tinuous fiber-reinforced composite tubes, J Compos Ma ter 1992, 26, 1, 37-50, https://doi.org/10.1177/002199839202600103.
  • 12. Ramakrishna S., Microstructural design of composite materials for crashworthy structural applications, Material & Design 1997, 18, 167–173, https://doi.org/10.1016/S0261-3069(97)00098-8.
  • 13. Alkoles O.M.S., Mahdi E., Hamouda A.M.S., Sahari B.B., Ellipticity ratio effects in the energy absorption of axially crushed composite tubes, Applied Composite Materials 2003, 10, 339–363, 10.1023/A:1025766609635.
  • 14. Czaplicki M., Robertson R., Thornton P., Comparision of bevel and tulip triggered pultruded tubes for energy absorption, Composites Science and Technology1991, 40, 31–46, https://doi.org/10.1016/0266-3538(91)90041-M.
  • 15. Farley G., Effect of fiber and matrix maximum strain on the energy absorption of composite materials, Journal of Composite Materials 1986, 20, 322-334, 10.1177/002199838602000401
  • 16. Farley G.L., Effect of specimen geometry on the energy absorption capability of composite materials, Journal of Composite Materials 1986, 20, 390–400, http://dx.doi.org/10.1177/002199838602000406.
  • 17. Gupta N., Velmurugan R., Gupta S., An analysis of axial crushing of composite tubes, Journal of Composite Materials 1997, 31, 1262–1286, 10.1177/002199839703101301.
  • 18. Gupta N., Velmurugan R., Gupta S., An analysis of axial crushing of composite tubes, Journal of Composite Materials 1997, 31, 1262–1286, 10.1177/002199839703101301.
  • 19. Swaminathan N., Averill R. C., Contribution of failure mechanisms to crush energy absorption in a composite tube, Mechanics of Advanced Materials and Structures 2006, 13, 1, 51–59, https://doi.org/10.1080/15376490500343782.
  • 20. Ochlewski S., Metody doświadczalne mechaniki kom pozytów konstrukcyjnych, WNT - Warszawa 2004.
  • 21. Lavoie J.A., Kellas S., Dynamic crush tests of energy absorbing laminated composite plates, Composites Part A 1996, 27, 467–75.
  • 22. Ramakrishna S., Hull D., Energy absorption capability of epoxy composite tubes with knitted carbon fibre fabric reinforcement, Composite Science and Technology 1993, 49, 349–356, https://doi.org/10.1016/0266 3538(93)90066-P.
  • 23. Jacob G., Fellers J., Simunovic S., Starbuck J., Energy absorption in polymer composites for automotive crash worthiness, Journal of Composite Materials 2002, 36, 813–850, https://doi.org/10.1177/0021998302036007164.
  • 24. Farley G.L., Energy absorption of composite material and structures, In: Proceedings of 43rd American Helicopter Society annual forum, St. Louis, USA, 1987, 613–27.
  • 25. Snowdon P., Hull D., Energy absorption of SMC under crash conditions, In: Proceedings of fiber reinforced composites conference '84. Plastics and Rubber Institute, 1984, 5.1–5.10.
  • 26. Thornton P.H., Tao W.H., Robertson R.E., Crash energy management: axial crush of unidirectional fiber composite rods, Advanced Composite Materials: New Developments and Applications, 1991, 489-496.
  • 27. Daniel L., Hogg P.J., Curtis P.T., The crush behavior of carbon fiber angle-ply reinforcement and the effect of interlaminar shear strength on energy absorption capa bility, Composites Part B 2000, 31, 435-40, 10.1016/S1359-8368(00)00026-3.
  • 28. Pickett L., Dayal V., Effect of tube geometry and plyangle on energy absorption of a circular glass/epoxy crush tube - a numerical study, Composites Part B: Eng 2012, 43, 2960-2967, 10.1016/j.compo sitesb.2012.05.040.
  • 29. Thornton P.H., Energy absorption in composite struc tures, Journal of Composite Materials 1979, 13, 247–262, https://doi.org/10.1177/002199837901300308.
  • 30. Warrior N.A., Turner T.A., Robitaille F., Rudd C.D., Effect of resin properties and processing parameters on crash energy absorbing composite structures made by RTM, Composites Part A 2003, 34, 543–550, https://doi.org/10.1016/S1359-835X(03)00057-5.
  • 31. Kim Jung-Seok, Yoon Hyuk-Jin, Shin Kwang-Bok, A study on crushing behaviors of composite circular tubes with different reinforcing fibers, International Journal of Impact Engineering 2011, 38,198–207, 10.1016/j.ijim peng.2010.11.007.
  • 32. Biswas R., Sharma N., Singh K. K., Influence of fiber areal density on mechanical behavior of basalt fiber/epoxy composites under varying loading rates: An experimental and statistical approach, Polymer Composites 2023, 44, 4, 2222, https://doi.org/10.1002/pc.27238.
  • 33. Ryzińska G., Gieleta R., Effect of test velocity on the specific energy absorption under progressive crushing of composite tubes, Advances in Science and Technology Research Journal 2020, 14, 2, 94–102, https://doi.org/10.12913/22998624/118551.
  • 34. ASTM D3039/D3039M Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, 2008.
  • 35. ASTM D7905 / D7905M – 14, Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites.
  • 36. 55ASTM D5528 Standard Test Method for Mode I In terlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4234448-1182-48ff-a859-39691f59d81c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.