PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear composites structural analysis with viscoelastic fibers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a formulation for material and geometrical nonlinear analysis of composite materials by immersion of truss finite elements into triangular 2D solid ones using a novel formulation of the finite element method based on positions. This positional formulation uses the shape functions to approximate some quantities defined in the Nonlinear Theory of Elasticity and proposes to describe the specific strain energy and the potential of the external loads as function of nodal positions which are set from a deformation function. Because the nodal positions have current values in each node, this method naturally considers the geometric nonlinearities while the nonlinear relationships between stress and strain may be considered by a pure nonlinear elastic theory called hyperelasticity which allows to obtain linearised constitutive laws in its variational form. This formulation should be able to include both viscoelastic and active behavior, as well as to allow the consideration of nonlinear relations between stresses and deformations. It is common to adopt hyperelastic constitutive laws. Few are the works that use the strategy of approaching the problem such as fibers immersed in a matrix. The immersion of fibers in the matrix makes it possible to include both a viscoelastic behavior in a simple and direct way. The examples are simple cases, some of them even with analytical solutions, mainly for validation purposes of the presented formulations. By modeling a structure, the examples show the potentialities of the concepts and proposed formulations.
Twórcy
  • Laboratoire de Recherche des Technologies Industrielles, Université Ibn Khaldoun de Tiaret, BP 78, Route de Zaroura, 14000 Tiaret, Algérie
autor
  • Laboratoire de Mécanique Appliquée, Université des Sciences et de la Technologie d’Oran (USTO MB), B.P 1505 Oran El Menaouer, 31000, Algérie
autor
  • Laboratoire de Mécanique Appliquée, Université des Sciences et de la Technologie d’Oran (USTO MB), B.P 1505 Oran El Menaouer, 31000, Algérie
Bibliografia
  • 1. Tang, C. Y.; Zhang, G.; Tsui, C. P. A 3d skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behaviour. Journal of Biomechanics, . 42, n. 7, (2009), 865–872.
  • 2. Huxley, A. F. Muscle structure and theories of contraction. Progress in Biophysics and Biophysical Chemistry, v. 7, (1957), 257–318.
  • 3. Hill, A. V. The heart shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London. Series B, Biological Sciences, v. 126, (1938), 136–195.
  • 4. Baiocco, M. H.; Coda, H. B.; Paccola, R. R. A simple way to model skeletal muscles by FEM. In: 22nd international congress of mechanical engineering (COBEM 2013), Ribeirão Preto, 2013. Annals of COBEM. Rio de Janeiro: Brazilian Association of Mechanical Sciences, 2013.
  • 5. Chagnon, G.; Rebouah, M.; Favier, D. Hyperelastic energy densities for soft biological tissues: a review. Journal of Elasticity, v. 120, n. 2, (2015), 129–160.
  • 6. Holzapfel, G. A. Nonlinear solid mechanics a continuum approach for engineering. Chichester: John Wiley & Sons Ltd., 2000.
  • 7. Weichert, F. et al. Finite element simulation of skeletal muscular structures obtained from images of histological serial sections. Journal of Biomechanics, v. 43, n. 8, (2010), 1483–1487.
  • 8. Humphrey, J. D. Review paper: continuum biomechanics of soft biological tissues. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, v. 459, n. 2029, (2003), 3–46.
  • 9. Weiss, J. A.; Maker, B. N.; Govindjee, S. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer Methods in Applied Mechanics and Engineering, v. 135, n. 1-2, (1996), 107–128.
  • 10. Martins, J. A. C. et al. A numerical model of passive and active behavior of skeletal muscles. Computer Methods in Applied Mechanics and Engineering, v. 151, n. 3-4, (1998), 419–433.
  • 11. Chagnon, G.; Rebouah, M.; Favier, D. Hyperelastic energy densities for soft biological tissues: a review. Journal of Elasticity, v. 120, n. 2, (2015), 129–160.
  • 12. Calvo, B., Ramírez, A., Alonso , A., Grasa , J., Soteras , F., Osta , R., Muñoz , M.J., Passive nonlinear elastic behaviour of skeletal muscle: experimental results and model formulation. Journal of Biomechanics, v. 43, n. 2, (2010), 318–325.
  • 13. Mukherjee, S. et al. Finite element crash simulations of the human body: passive and active muscle modelling. Sadhana Academy Proceedings in Engineering Sciences, v. 32, n. 4, (2007), 409–426.
  • 14. Bosboom, E. M. H. Hesselink, M.K.C., Oomens, C.W.J., Bouten, C.V.C., Drost, M.R., Baaijens, F.P.T., Passive transverse mechanical properties of skeletal muscle under in vivo compression. Journal of Biomechanics, v. 34, n. 10, (2001), 1365–1368.
  • 15. Muggenthaler, H. Influence of muscle activity on the kinematics of the Human body and the defor-mation characteristics of the muscle. Tese (Doctorate) - LMU Munich, Munich, 2006.
  • 16. Coda, H. B. Nonlinear analysis of geometric solids and structures: a positional formulation based on MEF. São Carlos, 2003. Thesis for a full-time professor.
  • 17. Novozhilov, V. V. Foundations of the nonlinear theory of elasticity. Fourth printing, february 1971. New York: Graylock press, 1953. Translated from the first Russian edition (1948).
  • 18. Ottosen, N.; Ristinmaa, M. The mechanics of constitutive modeling. Reino Unido: Elsevier, 2005.
  • 19. Pascon, J. P. On nonlinear constitutive models for materials with Functional gradation exhibiting large deformations numerical implementation In geometric nonlinear formulation. Thesis (Doctorate) - University of São Paulo, São Carlos, 2012.
  • 20. Thomas J. R. Hughes, The Finite Element Method : Linear Static and Dynamic, Finite Element Anal-ysis. ©1987 by Prentice-Hall, Inc.
  • 21. Bathe, K.-J. Finite Element Method. Wiley Encyclopedia of Computer Science and Engineering. 2008, 1–12.
  • 22. Dhatt, Gouri, Emmanuel Lefrançois, and Gilbert Touzot. Finite element method. John Wiley & Sons, 2012.
  • 23. Cook, Robert D. Finite element modeling for stress analysis. Wiley, 1994.
  • 24. Bathe, Klaus-Jürgen, and Edward L. Wilson. Numerical methods in finite element analysis. Vol. 197. Englewood Cliffs, NJ: Prentice-Hall, 1976.
  • 25. De Borst, R., Crisfield, M. A., Remmers, J. J., & Verhoosel, C. V. Nonlinear finite element analysis of solids and structures. John Wiley & Sons, 2012.
  • 26. Greco, M., et al. Nonlinear positional formulation for space truss analysis. Finite elements in analysis and design 42.12 (2006): 1079-1086.
  • 27. Bonet, J., Wood, R. D., Mahaney, J., & Heywood, P. (2000). Finite element analysis of air supported membrane structures. Computer methods in applied mechanics and engineering, 190(5), 579-595.
  • 28. Skallerud, Bjørn, and Jørgan Amdahl. Nonlinear analysis of offshore structures. Baldock, Hertford-shire,, England: Research Studies Press, 2002.
  • 29. Vanalli, L.; Paccola, R. R.; Coda, H. B. A simple way to introduce fibers into FEM models. Com-munications in Numerical Methods in Engineering, John Wiley & Sons Ltd., v. 24, n. 7, (2008), 585–603.
  • 30. Sampaio, M. do S.M.; Paccola, R.R.; Coda, H.B. Fully adherent fiber–matrix FEM formulation for geometrically nonlinear 2d solid analysis. Finite Elements in Analysis and Design, v. 66, n. 0, (2013), 12–25.
  • 31. Centeno, O.J. Finite element modeling of rubber bushing for crash simulation: experimental tests and validation. Dissertação (Mestrado) — Lund University, Lund, Suécia, 2009.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e421f8d2-e01e-46f6-9e8f-7a4c1481308c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.