PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Literature review on emissions from additive manufacturing by FDM method and their impact on human health

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Additive manufacturing in recent years has become one of the fastest growing technologies. The increasing availability of 3D printing devices means that every year more and more devices of this type are found in the homes of ordinary people. Unfortunately, air pollution is formed during the process. Their main types include Ultra Fine Particles (UFP) and Volatile Compounds (VOC). In the event of air flow restriction, these substances can accumulate in the room and then enter the organisms of people staying there. The article presents the main substances that have been identified in various studies available in literature. Health aspects and potential threats related to inhalation of substances contained in dusts and gases generated during the process are shown, taking into account the division into individual types of printing materials. The article also presents the differences between the research results for 3d printing from individual plastics among different authors and describes possible causes of discrepancies.
Słowa kluczowe
Twórcy
autor
  • Poznań University of Technology, Poznań, Poland
  • Poznań University of Technology, Institute of Materials Technology, pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland
Bibliografia
  • [1] Bernat Ł., Kroma A., Application of 3D printing casting models for disamatch forming method, Archives of Foundry Engineering, 4, 19, 95–98, 2019.
  • [2] Żukowska M., Górski F., Hamrol A., Rating of polymers for low-cost rapid manufacturing of individualized anatomical models used in presurgical planning, Computational and Experimental Simulations in Engineering: Proceedings of ICCE2019, 633–646, Springer 2020.
  • [3] Żukowska M., Górski F., Wichniarek R., Kuczko W., Methodology of low cost rapid manufacturing of anatomical models with material imitation of soft tissues, Advances in Science and Technology Research Journal, 13, 4, 120–128, 2019.
  • [4] Żukowska M., Górski F., Bromiński G., Rapid manufacturing and virtual prototyping of pre-surgery aids, World Congress on Medical Physics and Biomedical Engineering 2018, 68, 3, 399–406, Springer 2018.
  • [5] Górski F., Wichniarek R., Kuczko W., Banaszewski J., Pabiszczak M., Application of low-cost 3D printing for production of CT-based individual surgery supplies, World Congress on Medical Physics and Biomedical Engineering 2018, 249–253, Vol. 1, Springer Singapore 2019.
  • [6] Banaszewski J., Pabiszczak M., Pastusiak T., Buczkowska A., Kuczko W., Wichniarek R., Górski F., 3D printed models in mandibular reconstruction with bony free flaps, Journal of Materials Science: Materials in Medicine, 29, 2, 231–236, 2018.
  • [7] Attaran M., The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing, Business Horizons, 60, 5, 677–688, 2017.
  • [8] https://www.fortunebusinessinsights.com/industryreports/3d-printing-market-101902, access: 23.07.2020.
  • [9] Wojtyła S., Klama P., Baran T., Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon, Journal of Occupational and Environmental Hygiene, 14, 6, 80–85, 2017.
  • [10] Z każdym oddechem. Poprawa jakości powietrza w Europie. Europejska Agencja Środowiska, Sygnały EEA 2013, Kopenhaga 2013.
  • [11] https://www.carbonfootprint.com/docs/2018_8_electricity_factors_august_2018-online_sources.pdf, access: 23.07.2020.
  • [12] Metz N., Diesel particulate matter criteria for evaluation of health effects, 24 Internationales Wiener Motorensymposium, Wien 2003.
  • [13] Adamkiewicz Ł., Zewnętrzne koszty zdrowotne emisji zanieczyszczeń powietrza z sektora bytowo-komunalnego, Ministerstwo Przedsiębiorczości i Technologii, 2016.
  • [14] Zhang Q., Pardo M., Rudich Y., Kaplan-Ashiri I., Wong J.P.S., Davis A.Y., Black M.S., Weber R.J., Chemical composition and toxicity of particles emitted from a consumer-level 3D printer using various materials, Environmental Science Technology, 53, 12054–12061, 2019.
  • [15] Zhang Q., Wong J.P.S., Davis A.Y., Black M.S., Weber R.J., Characterization of particle emissions from consumer fused deposition modeling 3D printers, Aerosol Science and Technology, 51, 11, 1275– 1286, 2017, doi: 10.1080/02786826.2017.1342029.
  • [16] Rymaniak L., Ziolkowski A., Gallas D., Particle number and particulate mass emissions of heavy duty vehicles in real operating conditions, InMATEC Web of Conferences, vol. 118, p. 00025, 2017, EDP Sciences.
  • [17] Hall S., Pengelly I., Staff J., Plant N., Evans G., Measuring and controlling emissions from polymer filament desktop 3D printers, HSE, 2019, (RR1146).
  • [18] Yi J., LeBouf R.F., Duling M.G., Nurkiewicz T., Chen B.T., Airborne particle emission of a commercial 3D printer: the effect of filament material and printing temperature, Indoor Air, 27, 398–408, 2017.
  • [19] Gu J., Wensing M., Uhde E., Salthammer T., Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer, Environment International, 123, 476–485, 2019.
  • [20] https://pubchem.ncbi.nlm.nih.gov/compound/Irganox-1076#section=GHS-Classification, access: 23.07.2020.
  • [21] https://pubchem.ncbi.nlm.nih.gov/compound/Bisphenol-A#section=GHS-Classification, access: 23.07.2020.
  • [22] Nomiri S., Hoshyar R., Ambrosino C. et al., A mini review of bisphenol A (BPA) effects on cancerrelated cellular signaling pathways, Environ. Sci. Pollut. Res., 26, 8459–8467, 2019.
  • [23] https://pubchem.ncbi.nlm.nih.gov/compound/Triphenylphosphine-oxide#section=Uses, access: 23.07.2020.
  • [24] https://pubchem.ncbi.nlm.nih.gov/compound/Methyl-palmitate, access: 23.07.2020.
  • [25] https://pubchem.ncbi.nlm.nih.gov/compound/Tris_2-chloroethyl-phosphate#section=Safety-and-Hazards, access: 23.07.2020.
  • [26] Opinion on tris(2-chloroethyl)phosphate (TCEP) in Toys” (PDF). European Commission, Scientific Committee on Health and Environmental Risks. 22 March 2012. Retrieved February 25, 2013.
  • [27] Mokra K., Bukowski K., Woźniak K., Effects of tris(1-chloro-2-propyl)phosphate and tris(2-chloroethyl)phosphate on cell viability and morphological changes in peripheral blood mononuclear cells (in vitro study), Human & Experimental Toxicology, 37, 12, 1336–1345, 2018.
  • [28] Davis A., Zhang Q., Wong J., Weber R., Black M., Characterization of volatile organic compound emissions from consumer level material extrusion 3D printers, Building and Environment, 160, 106209, 2019, doi: 10.1016/j.buildenv.2019.106209.
  • [29] Floyd E.L., Wang J., Regens J.L., Fume emissions from a low-cost 3-D printer with various filaments, Journal of Occupational and Environmental Hygiene, 14, 7, 523–533, 2017, doi: 10.1080/15459624.2017.1302587.
  • [30] Kwon O., Yoon C.Y., Ham S., Park J., Characterization and Control of Nanoparticle Emission during 3D Printing, Environmental Science & Technology, 51, 18, 10357–10368, 2017, doi: 10.1021/acs.est.7b01454.
  • [31] Rao C., Gu F., Zhao P. et al., Capturing PM2.5 emissions from 3D printing via nanofiber-based air filter, Scientific Reports, 7, 10366, 2017, doi: 10.1038/s41598-017-10995-7.
  • [32] Stabile L., Scungio M., Buonanno G., Arpino F., Ficco G., Airborne particle emission of a commercial 3D printer: The effect of filament material and printing temperature, Indoor Air, 27, 2016, doi: 10.1111/ina.12310.
  • [33] Azimi P., Zhao D., Pouzet C., Crain N.E., Stephens B., Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three dimensional printers with multiple filaments, Environ. Sci. Technol., 50, 1260–1268, 2016.
  • [34] Gu J., Wensing M., Uhde E., Salthammer T., Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer, Environment International, 123, 476–485, 2019.
  • [35] Stefaniak A.B., LeBouf R.F., Yi J., Ham J., Nurkewicz T., Schwegler-Berry D.E., Chen B.T., Wells J.R., Duling M.G., Lawrence R.B., Martin S.B. Jr, Johnson A.R., Virji M.A., Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional printer, J. Occup. Environ. Hyg., 14, 7, 540–550, 2017.
  • [36] Matanoski G.M., Tao X., Styrene exposure and ischemic heart disease: A case-cohort study, Am. J. Epidemiol., 158, 10, 988–995, 2003.
  • [37] Ruder A.M., Ward E.M., Dong M., Okun A.H., Davis-King K., Mortality patterns among workers exposed to styrene in the reinforced plastic boatbuilding industry: an update, Am. J. Ind. Med., 45, 165– 176, 2004.
  • [38] Kolstad H.A., Juel K., Olsen J., Lynge E., Exposure to styrene and chronic health effects: mortality and incidence of solid cancers in the Danish reinforced plastics industry, Occup. Environ. Med., 52, 320–327, 1995.
  • [39] https://www.ciop.pl/CIOPPortalWAR/appmanager/ciop/pl?_nfpb=true&_pageLabel=P27600224401410431343241&id_czynn_chem=236
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e41a524e-24fc-42a2-a8b0-b95497d9b016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.