PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

214Bi/214Pb radioactivity ratio three-year monitoring in rainwater in Prague

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
III International Conference „Radon in the Environment” (3 ; 27-31 May 2019 ; Krakow, Poland)
Języki publikacji
EN
Abstrakty
EN
Continuous monitoring of natural gamma radiation in air has been carried out, during December 2014 – January 2018, with 1-min cyclic measurement in Prague, Czech Republic using a NaI(Tl) probe. The 214Bi/214Pb ratio as a tracer in rainwater has been investigated to study its variations related to both the ambient dose equivalent rate per hour and the amount of rainfall. A hybrid methodology for time series analysis, composed of the aggregation of two signal decomposition methods (multiple linear regression and empirical mode decomposition) and one forecasting method (support vector regression), has been applied to identify the anomalies in the studied signals in order to better find correlations among them. The results show a strong correlation between the ambient dose equivalent rate and the 214Bi/214Pb ratio values and between both these signals and rainfall amount≥5 mm/h. Furthermore, the considered descendants of radon are mainly responsible for the overall ambient dose equivalent rate.
Czasopismo
Rocznik
Strony
115--119
Opis fizyczny
Bibliogr. 3 poz., rys.
Twórcy
  • Department of Mathematics and Physics University of Campania “Luigi Vanvitelli” Viale Lincoln 5, 81100 Caserta, Italy
  • Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague Břehová 7, 11519 Prague, Czech Republic
  • Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Břehová 7, 11519 Prague, Czech Republic
  • National Radiation Protection Institute (SÚRO) Bartoškova 28, 14000 Prague, Czech Republic
  • Department of Mathematics and Physics University of Campania “Luigi Vanvitelli” Viale Lincoln 5, 81100 Caserta, Italy
Bibliografia
  • 1. Miyamoto, Y., Oda, T., Adachi, T., Noguchi, H., Nishimura, H., & Usuda, S. (2001). Technical preparations for atmospheric radioactivity monitoring. Nukleonika, 46(4), 123–126.
  • 2. Green, N. (2001). The NRPB environmental radioactivity surveillance programme. Nukleonika, 46(4), 127–129.
  • 3. La Verde, G., Roca, V., Sabbarese, C., Ambrosino, F., & Pugliese, M. (2018). Correlation of the activity concentration of gas radon in environments located on ground floor and underground level. Nuovo Cimento C, 41(6), 219. https://doi.org/10.1393/ncc/i2018-18219-0.
  • 4. Sabbarese, C., Ambrosino, F., Buompane, R., Pugliese, M., & Roca, V. (2017). Analysis of alpha particles spectra of the Radon and Thoron progenies generated by an electrostatic collection detector using new software. Appl. Radiat. Isot., 122, 180–185. https://doi.org/10.1016/j.apradiso.2017.01.042.
  • 5. Ambrosino, F., Buompane, R., Pugliese, M., Roca, V., & Sabbarese, C. (2018). RaMon A system for radon and thoron measurement. Nuovo Cimento C, 41(6),222. https://doi.org/10.1393/ncc/i2018-18222-5.
  • 6. La Verde, G., Roca, V., Sabbarese, C., Ambrosino, F., & Pugliese, M. (2018). The equilibrium factor in the radon dose calculation in the archaeological site of Acquedotto Augusteo del Serino in Naples. Nuovo Cimento C, 41(6), 218. https://doi.org/10.1393/ncc/i2018-18218-1.
  • 7. Stobiński, M., Jędrzejek, F., & Kubica, B. (2018). Preliminary studies on the spatial distribution of artificial 137Cs and natural gamma radionuclides in the region of the Ojców National Park, Poland. Nukleonika, 63(4), 105–111. DOI: 10.2478/nuka-2018-0013.
  • 8. Gan, N., Cen, K., Ye, R., & Li, T. (2018). Rapid estimation of environmental radioactivity surrounding Xiangshan uranium deposits, Jiangxi province, Eastern China. Nukleonika, 63(4), 113–121. DOI:10.2478/nuka-2018-0014.
  • 9. Horng, M. C., & Jiang, S. H. (2004). In situ measurements of gamma-ray intensity from radon progeny in rainwater. Radiat. Meas., 38, 23–30. https://doi.org/10.1016/S1350-4487(03)00285-3.
  • 10. Baker, S. I. (1999). Detection of radon decay products in rainwater. Health Phys., 77(5), S71–S76. DOI: 10.1097/00004032-199911001-00005.
  • 11. Moriizumi, J., Kondo, D., Kojima, Y., Liu, H., Hirao, S., & Yamazawa, H. (2015). 214Bi/214Pb radioactivity ratio in rainwater for residence time estimation of cloud droplets and raindrops. Radiat. Prot. Dosim., 167(1/3), 55–58. https://doi.org/10.1093/rpd/ncv220.
  • 12. Voltaggio, M. (2012). Radon progeny in hydrometeors at the Earth’s surface. Radiat. Prot. Dosim., 150(3), 334–341. https://doi.org/10.1093/rpd/ncr402.
  • 13. Foote, S. R., & Frick, N. E. (2001). Time variations of natural gamma radiation. Environ. Geosci., 8(2), 130–139. DOI: 10.1111/j.1526-0984.2001.82005.pp.x.
  • 14. Sabbarese, C., Ambrosino, F., De Cicco, F., Pugliese,M., Quarto, M., & Roca, V. (2017). Signal decomposition and analysis for the identification of periodic and anomalous phenomena in Radon time-series. Radiat. Prot. Dosim., 177(1/2), 202–206. https://doi.org/10.1093/rpd/ncx159.
  • 15. Duan, W. Y., Han, Y., Huang, L. M., Zhao, B. B., & Wang, M. H. (2016). A hybrid EMD-SVR model for the short-term prediction of significant wave height.Ocean Eng., 124, 54–73. https://doi.org/10.1016/j.oceaneng.2016.05.049.
  • 119 214Bi/214Pb radioactivity ratio three-year monitoring in rainwater in Prague 16. Ambrosino, F., De Cesare, W., Roca, V., & Sabbarese, C. (2019). Mathematical and geophysical methods for searching anomalies of the Radon signal related to earthquakes. J. Phys-Conf. Series, 1226(1), 012025.https://doi.org/10.1088/1742-6596/1226/1/012025.
  • 17. Ambrosino, F., Pugliese, M., Roca, V., & Sabbarese, C. (2018). Innovative methodologies for the analysis of radon time series. Nuovo Cimento C, 41(6), 223.https://doi.org/10.1393/ncc/i2018-18223-4.
  • 18. Ambrosino, F., Thinová, L., Briestenský, M., & Sabbarese, C. (2019). Analysis of radon time series recorded in Slovak and Czech caves for the detection of anomalies due to seismic phenomena. Radiat. Prot.Dosim., 186(2/3), 428–432. https://doi.org/10.1093/rpd/ncz245.
  • 19. Ambrosino, F., Thinová, L., Briestenský, M., & Sabbarese, C. (2019). Anomalies identification of Earth’s rotation rate time series (2012-2017) for possible correlation with strong earthquakes occurrence. Geod. Geodyn., 10(6), 455–459. https://doi.org/10.1016/j.geog.2019.06.002.
  • 20. United Nations Scientifi c Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation. United Nations Scientifi c Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Vol. 1: Sources. New York: United Nations.
  • 21. Ripley, B. D. (1977). Modelling spatial patterns. J. R. Stat. Ser. Soc. B-Stat. Methodol., 39(2), 172–192.
  • 22. Ambrosino, F. (2020). Study on a peak shape fitting model for the analysis of alpha-particle spectra. Appl. Radiat. Isot., 159, 109090. https://doi.org/10.1016/j.apradiso.2020.109090.
  • 23. Ambrosino, F., Thinová, L., Briestenský, M., Giudicepietro, F., Roca, V., & Sabbarese, C. (2020). Analysis of geophysical and meteorological parameters influencing 222Rn activity concentration in Mladeč caves (Czech Republic) and in soils of Phlegrean Fields caldera (Italy). Appl. Radiat. Isot., 160, 109140. https://doi.org/10.1016/j.apradiso.2020.109140.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e413d275-23f2-43f1-8db3-1141edcfa517
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.