PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Methodological approach to the measurement of ball bearing grooves geometric parameters based on coordinate measuring machine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bearings are essential components in aerospace machinery and various transportation vehicles, with the grooves inside them providing smooth tracks for rolling elements to carry loads while minimizing friction-induced wear. Accurate measurement of the dimensional and shape tolerances of these grooves is crucial. Coordinate measuring machines, known for their high precision and versatility, excel in measuring various types and shapes of workpieces. The bearing groove measurement method developed with CMMs introduces a notable innovation over conventional techniques. Unlike profilometers, which are often incapable of measuring certain groove types, this method can be applied to a broader range of samples, addressing a long-standing challenge. A comparison of uncertainty between this method and the traditional profilometer method resulted in an En value of 0.11, confirming its satisfactory measurement accuracy and compliance with the technical requirements for bearing groove geometric parameters.
Rocznik
Strony
1--12
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Division of Mechanics and Manufacture Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, China
  • Materials Genome Institute, Shanghai University, Shanghai, China
Bibliografia
  • [1] Zhang, S., Liu, Z., He, S., Wang, J., Chen, L. (2022). Improved double TQWT sparse representation using the MQGA algorithm and new norm for aviation bearing compound fault detection. Engineering Applications of Artificial Intelligence, 110. https://doi.org/10.1016/j.engappai.2022.104741
  • [2] Li, Z., Wang, C., Hu, X., Xu, E., Yang, L. (2024). Thermal-Mechanical Coupling Performance and Its Influence on Thermal Stiffness of Cylindrical Roller Bearings. Journal of Aerospace Engineering, 37 (4). https://doi.org/10.1061/jaeeez.Aseng-5168
  • [3] Wang, B., Zhang, X., Sun, C., Chen, X. (2019). A Quantitative Intelligent Diagnosis Method for Early Weak Faults of Aviation High-speed Bearings. ISA Transactions, 93, 370-383. https://doi.org/10.1016/j.isatra.2019.03.011
  • [4] Rejith, R., Kesavan, D., Chakravarthy, P., Narayana Murty, S.V.S. (2023). Bearings for aerospace applications. Tribology International, 181. https://doi.org/10.1016/j.triboint.2023.108312
  • [5] Lorenz, S.J., Sadeghi, F., Trivedi, H.K., Kirsch, M.S. (2023). Investigation into rolling contact fatigue performance of aerospace bearing steels. International Journal of Fatigue, 172. https://doi.org/10.1016/j.ijfatigue.2023.107646
  • [6] Kerrouche, R., Dadouche, A., Boukraa, S. (2023). Thermal characteristics of a 90-mm bore cylindrical roller bearings for aerospace applications: All-steel versus hybrid bearings. Tribology International, 185. https://doi.org/10.1016/j.triboint.2023.108495
  • [7] Guo, H., Duan, H., Lei, J., Wang, D., Du, S., Zhang, Y., Ding, Z. (2021). Failure analysis of automobile engine pump shaft bearing. Advances in Mechanical Engineering, 13 (4). https://doi.org/10.1177/16878140211009411
  • [8] Li, W., Chen, Q., Yang, Y., Xiao, Y., Li, M. (2021). Investigation on clinching assembly process of automobile wheel hub bearings. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235 (8), 2114-2123. https://doi.org/10.1177/0954407020987912
  • [9] Soni, T., Dutt, J.K., Das, A.S. (2021). Magnetic Bearings for Marine Rotor Systems - Effect of Standard Ship Maneuver. IEEE Transactions on Industrial Electronics, 68(2), 1055-1064. https://doi.org/10.1109/tie.2020.2967664
  • [10] Soni, T., Das, A.S., Dutt, J.K. (2020). Active vibration control of ship mounted flexible rotor-shaft-bearing system during seakeeping. Journal of Sound and Vibration, 467. https://doi.org/10.1016/j.jsv.2019.115046
  • [11] Yang, L., Xue, W., Gao, S., Liu, H., Cao, Y., Duan, D., Li, D., Li, S. (2022). Study on sliding friction and wear behavior of M50 bearing steel with rare earth addition. Tribology International, 174. https://doi.org/10.1016/j.triboint.2022.107725
  • [12] Chang, Z., Jia, Q. (2019). Optimization of grinding efficiency considering surface integrity of bearing raceway. SN Applied Sciences, 1 (7). https://doi.org/10.1007/s42452-019-0697-8
  • [13] Jiang, J., Ge, P., Sun, S., Wang, D. (2017). The theoretical and experimental research on the bearing inner ring raceway grinding process aiming to improve surface quality and process efficiency based on the integrated grinding process model. The International Journal of Advanced Manufacturing Technology, 93 (1-4), 747-765. https://doi.org/10.1007/s00170-017-0462-3
  • [14] Moazen Ahmadi, A., Petersen, D., Howard, C. (2015). A nonlinear dynamic vibration model of defective bearings - The importance of modelling the finite size of rolling elements. Mechanical Systems and Signal Processing, 52-53, 309-326. https://doi.org/10.1016/j.ymssp.2014.06.006
  • [15] Yang, Z., Huang, Z., Zha, H., Zhou, L., Huang, K. (2023). Measurement uncertainty evaluation and analysis for industrial computed tomography based on forest balls. Optics and Precision Engineering, 31 (11), 1672-1683. https://doi.org/10.37188/OPE.20233111.1672
  • [16] Chen, Z.-m., Hu, Z.-w., Wang, Q.-n., Shi, Y.-w. (2020). Error and limit determination for dimensional measurements of thin-walled structures with industrial computed tomography. Journal of Materials Engineering, 48 (8), 169-176. https://doi.org/10.11868/j.issn.1001-4381.2019.000286
  • [17] Chen, Y., Kang, J., Feng, L., Yuan, L., Liang, J., Zhao, Z., Wu, B. (2024). Deep learning-based frequency-multiplexing composite-fringe projection profilometry technique for one-shot 3D shape measurement. Measurement, 233. https://doi.org/10.1016/j.measurement.2024.114640
  • [18] Li, X., Ma, Z., Yuan, Z., Mu, T., Du, G., Liang, Y., Liu, J. (2024). A review on convolutional neural network in rolling bearing fault diagnosis. Measurement Science and Technology, 35 (7). https://doi.org/10.1088/1361-6501/ad356e
  • [19] Samuels, M.H., Kramer, A.R., Richardson, C.J.K. (2024). A self-referenced interferometer for in situ cryogenic wafer curvature measurements. Review of Scientific Instruments, 95 (4). https://doi.org/10.1063/5.0189541
  • [20] Eves, B.J., Leroux, I.D. (2023). Autocollimators: plane angle measurand ambiguities and the impact of surface form. Metrologia, 60 (6). https://doi.org/10.1088/1681-7575/acf9a8
  • [21] Sur, A., Das, R.K. (2017). Experimental investigation on waste heat driven activated carbon-methanol adsorption cooling system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39 (7), 2735-2746. https://doi.org/10.1007/s40430-017-0792-y
  • [22] Roy, A., Kale, S., Lingayat, A.B., Sur, A., Arun, S., Sengar, D., Gawade, S., Wavhal, A. (2023). Evaluating energy-saving potential in micro-cold storage units integrated with phase change material. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45 (10). https://doi.org/10.1007/s40430-023-04434-0
  • [23] Zhu, L., Zhao, M., Yang, S., Huang, Y., Jiang, H., Qin, X. (2024). Analysis and design of a novel target coding method for a portable coordinate measurement system. Metrology and Measurement Systems, 31, 135-151. https://doi.org/10.24425/mms.2023.148535
  • [24] Wan, X.X., Huang, X.G., Liu, Z. (2010). Uncertainty Evaluation of Spectral Color Measurement. Advanced Materials Research, 174, 36-39. https://doi.org/10.4028/www.scientific.net/AMR.174.36
  • [25] Shi, Y., Wang, W., Nie, X., Miao, J., Chen, W. (2024). Uncertainty analysis for free-space three-dimensional measurement of electromagnetic pulse. Metrology and Measurement Systems, 31, 213-229. https://doi.org/10.24425/mms.2024.148547
  • [26] Dorozhovets, M. (2023). Uncertainty of the conversion function caused by systematic effects in measurements of input and output quantities. Metrology and Measurement Systems, 30, 581-600. https://doi.org/10.24425/mms.2023.146422
  • [27] Zhou, W., Xie, J., Xi, K., Du, Y. (2019). Modified cell averaging CFAR detector based on Grubbs criterion in non-homogeneous background. IET Radar, Sonar & Navigation, 13 (1), 104-112. https://doi.org/10.1049/iet-rsn.2018.5160
  • [28] Santo, M.D., Liguori, C., Paolillo, A., Pietrosanto, A. (2004). Standard uncertainty evaluation in image-based measurements. Measurement, 36 (3-4), 347-358. https://doi.org/10.1016/j.measurement.2004.09.011
  • [29] Steele, A.G., Douglas, R.J. (2006). Extending En for measurement science. Metrologia, 43 (4), S235-S243. https://doi.org/10.1088/0026-1394/43/4/s10
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4130dc9-8ef3-4410-a6cb-5f097a39fbab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.