PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phycoremediation of mercury in the aquatic environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phycoremediation refers to the technology of using microalgae to reduce pollutants in the aquatic environment. The purpose of this study was to analyze the reduction of mercury heavy metal in the media by using several species of microalgae such as Spirulina maxima, Nannochloropsis oculata, Chlorella vulgaris, and Porphyridium cruentum. The algae were exposed to mercury during eight days of cultivation. A randomized design was set with three different concentrations of mercury, namely 1, 3, and 5 mg/dm3, with three replications for each concentration. The initial concentration of microalgae was set to 10 000 cells/cm3 for S. maxima and N. oculata, while the concentration for C. vulgaris and P. cruentum was set to 100 000 cells/cm3. The concentration of mercury was measured at the beginning (1st day), the middle (4th day), and the end of microalgae cultivation (8th day) by using the atomic absorption spectroscopy (AAS) tool. The result demonstrated a reduction of mercury concentration during the experiment in all experimental media, where the highest reduction was found at 1 mg/dm3 (p < 0.05). In conclusion, microalgae have their limited ability to absorb and adsorb heavy metals. Therefore, the utilization of low-concentration microalgae on reducing heavy metal such mercury is recommended and merits further investigation.
Rocznik
Strony
69--76
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
  • AquaRES Research Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
  • Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
  • AquaRES Research Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
  • MicroBase Research Group, Postgraduate Department, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
  • Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
  • Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
  • Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
  • Department of Fish Health Management and Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C Unair Surabaya 60115, Indonesia
  • Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Jl. Raya Jatinangor KM 21 Sumedang 45363, West Java, Indonesia
  • Research Center of Biotechnology and Bioinformatics Universitas Padjadjaran, Jl. Singaperbangsa No. 2, 40132 Bandung, Indonesia
Bibliografia
  • [1] HONG K.S., LEE H.M., BAE J.S., HA M.G., JIN J.S., HONG T.E., KIM J.P., JEONG E.D., Removal of heavy metal ions by using calcium carbonate extracted from starfish treated by protease and amylase, J. Anal. Sci. Technol., 2011, 2 (2), 75–82.
  • [2] CHEKROUN K.B., BAGHOUR M., The role of algae in phytoremediation of heavy metals. A review, J. Mater.Environ. Sci., 2013, 4 (6), 873–880.
  • [3] KUMAR K.S., DAHMS H., WON E., LEE J., SHIN K., Microalgae – a promising tool for heavy metal remediation, Ecotox. Environ. Saf., 2015, 112, 329–352.
  • [4] PURNAMAWATI F.S., SOEPROBOWATI T.R., IZZATI M., Potential of Chlorella vulgaris Beijenrick in remediation of Cd and Pb in laboratory scale, J. Bioma, 2015, 16 (2), 102–113.
  • [5] NEUSTADT J., PIECZENIK S., Heavy metal toxicity with emphasis on mercury, Integr. Med., 2007, 6 (2), 26–32.
  • [6] PAWLOWSKI L., Effect of mercury and lead on the total environment, Environ. Prot. Eng., 2011, 37 (1),105–117.
  • [7] ISLAM E., YANG X.E., HE Z.L., MAHMOOD Q., Assessing potential dietary toxicity of heavy metals inselected vegetables and food crops, J. Zhejiang Univ. Sci., 2007, B 8, 1–13.
  • [8] HALDER S., Bioremediation of heavy metals through freshwater microalgae, Schol. Acad. J. Biosci.,2014, 2 (11), 825–830.
  • [9] PERALES-VELA H.V., PEÑA-CASTRO J.M., CAÑIZARES-VILLANUEVA R.O., Heavy metal detoxification in eukaryotic microalgae, Chemosphere, 2006, 64, 110.
  • [10] FERRIS J.M., CHRISTIAN R., Aquatic primary production in relation to microalgal responses to changing light. A review, Aquatic Sci., 1991, 53 (2–3), 187–217.
  • [11] MONTEIRO C.M., MARQUES A.P.G.C., CASTRO P.M.L., MALCATA F.X., Characterization of Desmodesmus pleiomorphus isolated from a heavy metal-contaminated site. Biosorption of zinc, Biodegradation,2009, 20, 629–641.
  • [12] ZEINER M., REZIC I., STEFFAN I., Analytical methods for the determination of heavy metals in the textile industry, J. Chem. Chem. Eng., 2007, 56 (11), 587–595.
  • [13] AFANDI A.Y., SOEPROBOWATI T.R., HARIYATI R., The influence of different chromium heavy metal concentration on growth of Spirulina plantesis (Gomont) Geitler on a laboratory scale, J. Biol., 2014, 3 (3), 1–6.
  • [14] MAHARDIKA G., RINANTI A., FACHRUL M.F., Phytoremediation of heavy metal copper (Cu2+) by sunflower (Helianthus annuus L.), IOP Conf. Series Earth and Environmental Science, 2018, 106, 012120.
  • [15] NEMCOVA Y., Detection of cell wall structural polysaccacharides by cellulase-gold and chitinase-gold complexes, Czech Phyc., 2003, 3, 31–36.
  • [16] SURESH B., RAVISHANKAR G.A., Phytoremediation – a novel and promising approach for environmental clean-up, Crit. Rev. Biotechn., 2004, 24 (2–3), 97–124.
  • [17] RICE K.M., WALKER E.M., WU M., GILLETTE C., BLOUGH E.R., Environmental mercury and its toxic effects, J. Prev. Med. Public Health, 2014, 47, 74–83.
  • [18] GOMEZ-JACINTO V., BARRERA T.G., ARIZA J.L.G., NORES I.G. LOBATO C.V., Elucidation of the defence mechanism in microalgae Chlorella sorokiniana under mercury exposure. Identification of Hg-phytochelatins, Chem. Biol. Inter., 2015, 5 (238), 82–90.
  • [19] MARESI S.R.P., PRIYANTI P., YUNITA E., Phytoplankton as bioindicator saprobic in Bulakan Tangerang, J. Biol., 2015, 8 (2), 113–122.
  • [20] MUFIDAH A., AUGUSTONO A., SUDARNO S., NINDFARWI D.D., Technical culture of Chlorella sp. onlaboratory and intermediate scale in Brackishwater Culture Center Situbondo East Java, J. Aquacult. Fish Health, 2017, 7 (2), 50–56.
  • [21] AYANGBENRO A.S., BABALOLA O.O., A new strategy for heavy metal polluted environments. A review of microbial biosorbents, Environ. Res. Public Health, 2016, 14, 94.
  • [22] NURDIN S., Optimization of biofloc forming from Chaetoceros sp., Thalassiosira sp., and probiotics bacteria through salinity variation in vitro, J. Bion., 2017, 18 (2), 140–151.
  • [23] MUCHAMMAD A.E., KARDENA D.A.R., The influence of light intensity towards carbon dioxide absorption by tropical microalgae Ankistrodesmus sp., dalam fotobioreactor, J. Tek. Ling., 2013, 19 (2), 103–116.
  • [24] APRILIYANTI S., SOEPROBOWATI T.R., YULIANTO B., Relationship abundance Chlorella sp. with the quality of the aquatic environment at a semi-mass scale at Jepara, J. Ilmu Ling., 2016, 14 (2), 77–81 (in Indonesian).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e412c6dd-bd52-4b6e-9fee-5d76c5a27da3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.