Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An optimum route to fabricate the Ni-based superalloy with homogeneous dispersion of Y2O3 particles is investigated. Ni-based ODS powder was prepared by high-energy ball milling of gas-atomized alloy powders and Y2O3 particles treated with a high-pressure homogenizer. Decrease in particle size and improvement of dispersion stability were observed by high-pressure homogenization of as-received Y2O3 particles, presumably by the powerful cavitation forces and by collisions of the particles. Microstructural analysis for the ball-milled powder mixtures reveal that Ni-based ODS powders prepared from high-pressure homogenization of Y2O3 particles exhibited more fine and uniform distribution of Ni and Y elements compared to the as-received powder. These results suggested that high-pressure homogenization process is useful for producing Ni-based superalloy with homogeneously dispersed oxide particles.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1055--1058
Opis fizyczny
Bibliogr. 15 poz., fot., rys.
Twórcy
autor
- Seoul National University of Science and Technology, Department of Materials Science and Engineering & the Institute of Powder Technology, Seoul 01811, Republic of Korea
autor
- Seoul National University of Science and Technology, Department of Materials Science and Engineering & the Institute of Powder Technology, Seoul 01811, Republic of Korea
autor
- Seoul National University of Science and Technology, Department of Materials Science and Engineering & the Institute of Powder Technology, Seoul 01811, Republic of Korea
Bibliografia
- [1] T.M. Pollock, T. Sammy, J. Propul. Power 22, 361 (2006).
- [2] W. Betteridge, S.W.K. Shaw, Mater. Sci. Technol. 3, 682 (1987).
- [3] G. Quan, Y. Zhang, P. Zhang, Y. Mai, W. Wang, Trans. Nonferrous Met. Soc. China 31, 438 (2021).
- [4] W. Sha, H.K.D.H. Bhadeshia, Metall. Mater. Trans. A 25, 705 (1994).
- [5] G.W. Noh, Y.D. Kim, K.-A. Lee, H.-J. Kim, J. Korean Powder Metall. Inst. 27, 8 (2020).
- [6] J.S. Benjamin, Metall. Trans. 1, 2943 (1970).
- [7] S.K. Kang, R.C. Benn, Metall. Trans. A 16, 1285 (1985).
- [8] Y.-I. Lee, E.S. Lee, S.-T. Oh, J. Nanosci. Nanotechnol. 21, 4955 (2021).
- [9] J.H. Schneibel, S. Shim, Mater. Sci. Eng. A 488, 134 (2008).
- [10] Q.X. Sun, T. Zhang, X.P. Wang, Q.F. Fang, T. Hao, C.S. Liu, J. Nucl. Mater. 424, 279 (2012).
- [11] J. Kluge, G. Muhrer, M. Mazzotti, J. Supercrit. Fluids 66, 380 (2012).
- [12] O. Mengual, G. Meunier, I. Cayré, K. Puech, P. Snabre, Talanta 50, 445 (1999).
- [13] W.D. Pandolfe, J. Dispersion Sci. Technol. 2, 459 (1981).
- [14] M. Luo, X. Qi, T. Ren, Y. Huang, A.A. Keller, H. Wang, B. Wu, H. Jin, F. Li, Colloids Surf. A 533, 9 (2017).
- [15] C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).
Uwagi
1. This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e410bc3a-02e4-4361-ace9-184229c7d4aa