Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In order to develop a PM BLDC motor control system, which will be tolerant of selected faults, simulation work was first performed and then verified on a universal test stand. The results were published in earlier works. The next stage of works was the implementation of previously developed algorithms on the target research test stand – in this case, the prototype vehicle. This last stage of the laboratory work has been presented in this article, i.e. it has been presented the results of experimental research related to the reproduction of rotor angle position, used after the detection of a rotor position sensor fault. A new test stand with the laboratory prototype of a vehicle with two PM BLDC motors is presented. A zeroth-order algorithm (ZOA) was used as a fault compensation method. The effectiveness and usefulness of the previously proposed methods have been confirmed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
725--738
Opis fizyczny
Bibliogr. 12 poz., rys., tab., wz.
Twórcy
autor
- Department of Electrical Machines, Drives and Measurements Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] Skóra M., Kowalski C. T., Analysis of vibrations caused by controller fault in PM BLDC motor drive, Maszyny Elektryczne – Zeszyty Problemowe (in Polish), no. 108, pp. 7–13 (2015).
- [2] Tashakori A., Ektesabi M., A simple fault tolerant control system for Hall effect sensors failure of BLDC motor, IEEE 8th Conference on Industrial Electronics and Applications, Melbourne, Australia, pp. 1011–1016 (2013).
- [3] Scelba G., de Donato G., Pulvirenti M., Capponi F. G., Scarcella G., Hall-effect sensor fault detection, identification an compensation in brushless DC drives, IEEE Transactions on Industry Applications, vol. 52, no. 2, pp. 1542–1554 (2016).
- [4] Skóra M., Kowalski C. T., Detection and compensation of transistor and position sensors faults in PM BLDCM drives, [in:] Kabziński J. (eds.), Advanced Control of Electrical Drives and Power Electronic Converters. Studies in Systems, Decision and Control, Springer, pp. 193–218 (2017).
- [5] Sova V., Chalupa J., Grepl R., Fault tolerant BLDC motor control for Hall sensors failure, 21st International Conference on Automation and Computing, Glasgow, UK, pp. 1–6 (2015).
- [6] Skóra M., Kowalski C. T., The influence of sensor faults on PM BLDC motor drive, International Conference on Electrical Drives and Power Electronics, Tatranska Lomnica, Slovakia, pp. 1–6 (2015).
- [7] de Angelo C., Bossio G., Solsona J., Garcia G. O., Valla M. I., A rotor position and speed observer for permanent-magnet motors with nonsinusoidal EMF waveform, IEEE Transactions on Industrial Electronics, vol. 52, pp. 807–813 (2005).
- [8] Kumar R., Padmanaban S. V., An artificial neural network based rotor position estimation for sensorless permanent magnet brushless DC motor drive, The 32nd Annual Conference of the IEEE Industrial Electronics Society, Paris, France, pp. 649–654 (2006).
- [9] Tae-Hyung K., Ehsani M., Sensorless control of the BLDC motors from near-zero to high speeds, IEEE Transactions on Power Electronics, no. 6, pp. 1635–1645 (2004).
- [10] Bist V., Singh B., Power factor correction in sensorless BLDC motor drive, 6th India International Conference on Power Electronics, Kurukshetra, India, pp. 1–6 (2014).
- [11] Toman J., Singule V., Hadas Z., Model of aircraft actuator with BLAC motor, 16th International Power Electronics and Motion Control Conference and Exposition, Antalya, Turkey, pp. 197–202 (2014).
- [12] Skóra M., Operation of PM BLDC motor drives with faulty rotor position sensor, LIII International Symposium on Electrical Machines (SME), Naleczow, Poland, pp. 1–6 (2017).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4101ceb-f435-4e8a-9fc0-edd17e970060