PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Chemia bioortogonalna – użyteczne narzędzie badania procesów wewnątrzkomórkowych

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Bioortogonal chemistry - a useful tool for studying intercellular processes
Języki publikacji
PL
Abstrakty
EN
Bioorthogonal chemistry is a rapidly developing field of science operating on the border of chemistry and biology. Its initial goal was to study metabolism and imaging using fluorescently labelled compounds. Due to recent advances, bioorthogonal chemistry can also be used to engineer therapeutic bioconjugates. By using a combination of bioconjugation and advanced omics techniques, it is possible to study and modify complex interactions inside living cells. In the relatively short time since its introduction, bioorthogonal chemistry has found many applications. In nucleic acid research, it is used for labelling, e.g. with biotin, to facilitate detection, immobilization, and purification. Additionally, thanks to the use of fluorescent nucleoside analogues, it can be used to study the interaction and dynamics of nucleic acids. For the study of proteins, bioorthogonal chemistry is an invaluable tool for studying conformation, as well as intramolecular and intermolecular interactions. Using techniques such as PET and FRET it is possible to take a closer look at the structure of proteins, which has a significant impact on their functionality. By using biarsenical dyes, interactions between proteins are tracked. This is used in the study of protein aggregation in diseases such as Alzheimer's, Huntington's, and prion diseases. Thanks to this, it becomes possible to understand the mechanism and pathology of these diseases. In biosensing, the elements of bioorthogonal chemistry have been used in a variety of tests and imaging methods. In the end, methods for testing glycan are presented. The advantage of bioorthogonal methods is that they allow labelling on the whole cell or lysate. This application in glycoproteomics is extremely important due to the fact that changes in glycosylation occur during disease states.
Rocznik
Strony
79--95
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
  • Wydział Chemii Uniwersytetu Jagiellońskiego w Krakowie
Bibliografia
  • [1] E.M. Sletten, C.R. Bertozzi, Angew. Chemie - Int. Ed., 2009, 48, 6974.
  • [2] B. Oller-Salvia, G. Kym, J.W. Chin, Angew. Chem. Int. Ed., 2018, 57, 2831.
  • [3] M.L. W.J. Smeenk, J. Agramunt, K.M. Bonger, Curr. Opin. Chem. Biol. 2021, 60, 79.
  • [4] E. Saxon, C.R. Bertozzi, Science, 2000, 287, 2007.
  • [5] D.R. Spiciarich, R. Nolley, S.L. Maund, S. C. Purcell, J. Herschel, A.T. Iavarone, D.M. Peehl, C.R. Bertozzi, Angew. Chem. Int. Ed., 2017, 56, 8992.
  • [6] G. Hermanson, Bioconjugate Techniques: Third Edition, Academic Press, London, 2013.
  • [7] L. Stryer, J.M. Berg, J.L. Tymoczko, G. Gatto, Biochemistry, Ninth Edition. Macmillan, New York, 2019.
  • [8] W.T. Penberthy, M. Sadri, J. Zempleni, Chapter 17 - Biotin, in edited by B.P. Marriott, D.F. Birt, V.A. Stallings, A.A.B.T.-P.K. in N. (Eleventh E. Yates (Academic Press, 2020), pp. 289–303.
  • [9] Thermo Fisher, Chemical Reactivity of Crosslinkers and Modification Reagents, Crosslink. Technol. React. Chem. Appl. Struct. Ref. 3, 2012.
  • [10] M.-L. Winz, E.C. Linder, T. André, J. Becker, A. Jäschke, Nucleic Acids Res., 2015, 43, e110.
  • [11] C. Wu, T. Kurinomaru, Anal. Sci. Int. J. Japan Soc. Anal. Chem., 2019, 35, 301.
  • [12] S.H. Weisbrod, A. Marx, Chem. Commun. (Camb)., 2007, 1828.
  • [13] S.H. Weisbrod, A. Baccaro, A. Marx, Nucleic Acids Symp. Ser. (Oxf)., 2008, 383.
  • [14] J.C. Knight, B. Cornelissen, Am. J. Nucl. Med. Mol. Imaging 2014, 4, 96.
  • [15] M. Pretze, F. Wuest, T. Peppel, M. Köckerling, C. Mamat, Tetrahedron Lett., 2010, 51, 6410.
  • [16] C. Bednarek, I. Wehl, N. Jung, U. Schepers, S. Bräse, Chem. Rev. 120, 2020, 4301.
  • [17] C.I. Schilling, N. Jung, M. Biskup, U. Schepers, S. Bräse, Chem. Soc. Rev., 2011, 40, 4840.
  • [18] M. Köhn, R. Breinbauer, Angew. Chem. Int. Ed., 2004, 43, 3106.
  • [19] S.S. van Berkel, M.B. van Eldijk, J.C.M. van Hest, Angew. Chem. Int. Ed., 2011, 50, 8806.
  • [20] J. Lakowicz, Principles of Fluorescence Spectroscopy, Vol. 1 Springer, Boston, 2006.
  • [21] R.W. Sinkeldam, N.J. Greco, Y. Tor, Chem. Rev., 2010, 110, 2579.
  • [22] L.M. Wilhelmsson, Q. Rev. Biophys., 2010, 43, 159.
  • [23] X. Ming, F. Seela, Chemistry, 2012, 18, 9590.
  • [24] H. Inoue, A. Imura, E. Ohtsuka, Nippon KAGAKU KAISHI, 1987, 1987, 1214.
  • [25] D. Guin, M. Gruebele, Chem. Rev., 2019, 119, 10691.
  • [26] S. Ribeiro, S. Ebbinghaus, J.C. Marcos, FEBS Lett., 2018, 592, 3040.
  • [27] R.D. Cohen, G.J. Pielak, J. Am. Chem. Soc., 2016, 138, 13139.
  • [28] J. Bieschke, P. Weber, N. Sarafoff, M. Beekes, A. Giese, H. Kretzschmar, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 12207.
  • [29] C. Scheckel, A. Aguzzi, Nat. Rev. Genet., 2018, 19, 405.
  • [30] W.R. Algar, P.E. Dawson, I.L. Medintz, Chemoselective and Bioorthogonal Ligation Reactions, Wiley-VCH, Weinheim, 2017.
  • [31] N. Stephanopoulos, M.B. Francis, Nat. Chem. Biol., 2011, 7, 876.
  • [32] J.-H. Zhao, H.-L. Liu, H.-Y. Lin, C.-H. Huang, H.-W. Fang, S.-S. Chen, Y. Ho, W.-B. Tsai, W.-Y. Chen, Perspect. Medicin. Chem., 2008, 1, 39.
  • [33] R. Santucci, F. Sinibaldi, L. Fiorucci, Mini Rev. Med. Chem., 2008, 8, 57.
  • [34] M.-H. Seo, T.-S. Lee, E. Kim, Y.L. Cho, H.-S. Park, T.-Y. Yoon, H.-S. Kim, Anal. Chem., 2011, 83, 8849.
  • [35] M. Jäger, E. Nir, S. Weiss, Protein Sci., 2006, 15, 640.
  • [36] J. Gaspersic, I. Hafner-Bratkovic, M. Stephan, P. Veranic, M. Bencina, I. Vorberg, R. Jerala, FEBS J., 2010, 277, 2038.
  • [37] Y. Hu, B. Su, C.-S. Kim, M. Hernandez, A. Rostagno, J. Ghiso, J.R. Kim, Chembiochem, 2010, 11, 2409.
  • [38] Y.M. Ramdzan, R.M. Nisbet, J. Miller, S. Finkbeiner, A. F. Hill, D.M. Hatters, Chem. Biol., 2010, 17, 371.
  • [39] N. Luedtke, R. Dexter, D. Fried, A. Schepartz, Nat. Chem. Biol., 2008, 3, 779.
  • [40] R. Scheck , A. Schepartz, Acc. Chem. Res., 2011, 44, 654.
  • [41] Y.-X. Chen, G. Triola, H. Waldmann, Acc. Chem. Res., 2011, 44, 762.
  • [42] K.E. Sapsford, W.R. Algar, L. Berti, K.B. Gemmill, B.J. Casey, E. Oh, M.H. Stewart, I.L. Medintz, Chem. Rev., 2013, 113, 1904.
  • [43] W.R. Algar, D.E. Prasuhn, M.H. Stewart, T.L. Jennings, J.B. Blanco-Canosa, P.E. Dawson, I.L. Medintz, Bioconjug. Chem., 2011, 22, 825.
  • [44] H.T. Le, J.-G. Jang, J.Y. Park, C.W. Lim, T.W. Kim, Anal. Biochem., 2013, 435, 68.
  • [45] Y. Zeng, T.N.C. Ramya, A. Dirksen, P.E. Dawson, J.C. Paulson, Nat. Methods, 2009, 6, 207.
  • [46] T.N.C. Ramya, E. Weerapana, B.F. Cravatt, J.C. Paulson, Glycobiology, 2013, 23, 211.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e40f48aa-bea4-48b6-bbae-aaf9ae50e2ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.