PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Purification of the gas after pyrolysis in coupled plasma-catalytic system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gliding discharge and coupled plasma-catalytic system were used for toluene conversion in a gas composition such as the one obtained during pyrolysis of biomass. The chosen catalyst was G-0117, which is an industrial catalyst for methane conversion manufactured by INS Pulawy (Poland). The effects of discharge power, initial concentration of toluene, gas flow rate and the presence of the bed of the G-0117 catalyst on the conversion of C7 H8 , a model tars compounds were investigated. Conversion of coluene increases with discharge power and the highest one was noted in the coupled plasma-catalytic system. It was higher than that in the homogeneous system of gliding discharge. When applying a reactor with reduced G-0117 and CO (0.15 mol%), CO2  (0.15 mol%), H2  (0.30 mol%), N2  (0.40 mol%), 4000 ppm of toluene and gas flow rate of 1.5 Nm3 /h, the conversion of toluene was higher than 99%. In the coupled plasma-catalytic system with G-0117 methanation of carbon oxides was observed.
Rocznik
Strony
94--98
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, 3 Noakowskiego, 00-664 Warsaw, Poland
autor
  • Warsaw University of Technology, 3 Noakowskiego, 00-664 Warsaw, Poland
autor
  • Warsaw University of Technology, 3 Noakowskiego, 00-664 Warsaw, Poland
autor
  • Warsaw University of Technology, 3 Noakowskiego, 00-664 Warsaw, Poland
autor
  • Warsaw University of Technology, 3 Noakowskiego, 00-664 Warsaw, Poland
Bibliografia
  • 1. Nahar, G., Mote, D. & Dupont, V. (2017). Hydrogen production from reforming of biogas Review of technological advances and an Indian perspective. Renew. Sust. Energ. Rev. 76, 1032–1052. DOI: 10.1016/j.rser.2017.02.031.
  • 2. Molino, A., Chianese, S. & Musmarra, D. (2016). Biomass gasification technology The state of the art overview. J. Energy. Chem. 25, 10–25. DOI: 10.1016/j.jechem.2015.11.005.
  • 3. Hossain, M. A., Jewaratnam, J. & Ganesan, P. (2016). Prospect of hydrogen production from oil palm biomass by thermochemical process – A review. Int. J. Hydrogen. Energ. 41, 16637–6655. DOI: 10.1016/j.ijhydene.2016.07.104.
  • 4. Chan, F. L. & Tanksale, A. (2014). Review of recent developments in Ni-based catalysts for biomass gasification. Renew. Sust. Energ. Rev. 38, 428–438. DOI: 10.1016/j.rser.2014.06.011.
  • 5. Anis, S. & Zainal, Z. A. (2011). Tar reduction in biomass producer gas via mechanical. catalytic and thermal methods – A review. Renew. Sust. Energ. Rev. 15, 2355–2377. DOI: 10.1016/j.rser.2011.02.018.
  • 6. Devi, L., Ptasinski, K. J. & Janssen, F. J. J. G. (2005). Decomposition of naphthalene as a biomass tar over pre-treated olivine: Effect of gas composition, kinetic approach, and reaction scheme. Ind. Eng. Chem. Res. 44, 9096–9104. DOI: 10.1021/ie050801g.
  • 7. Zhao, B., Zhang, X., Chen, L., Qu, R., Meng, G., Yi, X. & Sun, L. (2010) Steam reforming of toluene as model compound of biomass pyrolysis tar for hydrogen. Biomass Bioenerg. 34, 140–144. DOI: 10.1016/j.biombioe.2009.10.011.
  • 8. Noichi, H., Uddin, A. & Sasaoka, E. (2010). Steam reforming of naphthalene as model biomass tar over iron–aluminum and iron–zirconium oxide catalyst catalysts, Fuel Process. Technol. 91, 1609–1616. DOI: 10.1016/j.fuproc.2010.06.009.
  • 9. Kong, M., Fei, J. H., Wang, S. A., Lu, W. & Zheng, X. M. (2011). Influence of supports on catalytic behavior of nickel catalysts in carbon dioxide reforming of toluene as a model compound of tar from biomass gasification, Bioresour. Technol. 102, 2004–2008. DOI: 10.1016/j.biortech.2010.09.054.
  • 10. Zhang, R. Q., Wang, H. J. & Hou, X. X. (2014). Catalytic reforming of toluene as tar model compound: effect of Ce and Ce–Mg promoter using Ni/olivine catalyst. Chemosphere. 97, 40–46. DOI: 10.1016/j.chemosphere.2013.10.087.
  • 11. Świerczyński, D., Libs, S., Courson, C. & Kiennemann, A. (2007). Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound. Appl. Catal. B, 74, 211–222. DOI: 10.1016/j.apcatb.2007.01.017.
  • 12. Ni, M., Leung, D. Y. C., Leung, M. K. H. & Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Process Technol. 87, 461–472. DOI: 10.1016/j.fuproc.2005.11.003.
  • 13. Fagbemi, L., Khezami, L. & Capart, R. (2001). Pyrolysis products from different biomasses: application to the thermal cracking of tar. Appl. Energy. 69, 293–306. DOI: 10.1016/S0306-2619(01)00013-7.
  • 14. Pathak, B. S., Kapatel, D. V., Bhoi, P. R., Sharma, A. M. & Vyas, D. K. (2007). Design and development of sand bed filter for upgrading producer gas to IC engine quality fuel. Int. Energy J. 8, 15–20. DOI: 10.1063/1.4791590.
  • 15. Bhave, A. G., Vyas, D. K. & Patel, J. B. (2008). Wet packed bed scrubber-based producer gas cooling-cleaning system. Renew. Energ. 33, 1716–1720. DOI: 10.1016/j.renene.2007.08.014.
  • 16. Shen, Y. & Yoshikawa, K. (2013). Recent progresses in catalytic tar elimination during biomass gasification. Renew. Sust. Energ. Rev. 21, 371–392. DOI: 10.1016/j.rser.2012.12.062.
  • 17. Park, J. Lee, Y. & Ryu, C. (2016). Reduction of primary tar vapor from biomass by hot char particles in fixed bed gasification. Biomass. Bioenerg. 90, 114–121. DOI: 10.1016/j.biombioe.2016.04.001.
  • 18. Tuomi, S. Kurkela, E. Simell, P. & Reinikainen, M. (2015). Behaviour of tars on the filter in high temperature filtration of biomass-based gasification gas. Fuel 139, 220–231. DOI: 10.1016/j.fuel.2014.08.051.
  • 19. Liu, X. Yang, X. Liu, C. Chen, P. Yue, X. & Zhang, S. (2016). Low-temperature catalytic steam reforming of toluene over activated carbon supported nickel catalysts. J. Taiwan. Inst. Chem. E. 65, 233–241. DOI: 10.1016/j.jtice.2016.05.006.
  • 20. Di Felice, L., Courson, C., Foscolo, P. U. & Kiennemann, A. (2011). Iron and nickel doped alkaline-earth catalysts for biomass gasification with simultaneous tar reformation and CO2 capture. Int. J. Hydrogen. Energ. 36, 5296–5310. DOI: 10.1016/j.ijhydene.2011.02.008.
  • 21. Łamacz, A., Krzton, A. & Djega-Mariadassou, G. (2011). Steam reforming of model gasification tars compounds on nickel based ceria-zirconia catalysts. Catal. Today 17, 347–351. DOI: 10.1016/j.cattod.2010.11.067.
  • 22. Di Carlo, D. A., Borello, D., Sisinni, M., Savuto, E., Venturini, P., Bocci, E. & Kuramoto, K. (2015). Reforming of tar contained in a raw fuel gas from biomass gasification using nickel-mayenite catalyst. Int. J. Hydrogen. Energ. 40, 9088–9095. DOI: 10.1016/j.ijhydene.2015.05.128.
  • 23. Tao, K., Ohta, N., Liu, G., Yoneyama, Y., Wang, T. & Tsubaki, N. (2013). Plasma enhanced catalytic reforming of biomass tar model compound to syngas. Fuel. 104, 53–57. DOI: 10.1016/j.fuel.2010.05.044.
  • 24. Liu, S., Mei, D., Wang, L. & Tu, X. (2017). Steam reforming of toluene as biomass tar model compound in a gliding arc discharge reactor. Chem. Eng. J. 307, 793–802. DOI: 10.1016/j.cej.2016.08.005.
  • 25. Nadziakiewicz, J., Pikoń, K. & Stelmach, S. (2012). Oczyszczanie gazu syntezowego z zanieczyszczeń węglowodorowych w reaktorze plazmowo-katalitycznym. Przem. Chem. 91, 1270–1274.
  • 26. Młotek, M., Reda, E., Jóźwik, P., Krawczyk, K. & Bojar, Z. (2015). Plasma-catalytic decomposition of cyclohexane in gliding discharge reactor. Appl. Catal. A-Gen. 505, 150–158. DOI: 10.1016/j.apcata.2015.07.033.
  • 27. Młotek, M., Ulejczyk, B., Walerczak, I., Woroszył, J. & Krawczyk, K. (2016). The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry Hakone XV, 11–16 September 2016 (pp. 245–248). Brno, Czech Republic.
  • 28. Młotek, M., Ulejczyk, B., Woroszył, J. & Krawczyk, K. (2017). 21st Symposium on Applications of Plasma Processes. 13–18 January 2017 (pp. 236–240). Štrbské Pleso. Slovakia.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e40eaa04-4e57-4442-9d71-1470fd8ab549
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.