PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations of the Mechanism of the Sand Shooting into the Core Box

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of investigations of sand shooting into the core box are presented in the hereby paper. The investigations concern the formation of the diphase sand-air flux, its motion, flowing and compaction in the cavity during the core forming. Conditions deciding on the course of individual phases of the process are discussed with taking into consideration the influence of such factors as: the shot pressure, shooting hole diameter, number and distribution of deaerating vents in experimental core boxes (of a single cavity and of multi cavities) on the core sand compaction state. Investigations were performed by means of the modernised experimental shooting machine SR-3D, of the shooting chamber volume of 3.3 dm3, connected with the system of pneumatic supply ensuring the stable pressure supply of values: 0.4 MPa, 0.5 MPa and 0.6 MPa. Two diameters of the shooting hole, equal 10 mm and 20 mm, were applied for filling three experimental core boxes differing in dimensions of cavities and in number and distribution of deaerating vents. The filling process of core boxes was recorded by means of the digital camera PHANTOM V210 with the filming rate of 3000 pictures in second. Simultaneously, during the shot, other values allowing to determine the intensity of the core sand outflow from the shooting chamber to the core box, were tested. The presented in this publication results constitute the important element of the experimental verification of the blowing process simulation calculations which will be performed.
Rocznik
Strony
113--119
Opis fizyczny
Bibliogr. 20 poz., fot., rys., tab.
Twórcy
autor
  • AGH – University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
Bibliografia
  • [1] Holtzer, M., Dańko, R. & Żymankowska-Kumon, S. (2012). Foundry industry - current state and future development. Metalurgija. 51(3), 337-340.
  • [2] Dańko, R. (2018). Studies of the influence of the number and distribution of vents on the production process of cores by the blowing method. Archives of Metallurgy and Materials. 63(1), 105-111. DOI: 10.24425/118915.
  • [3] Fedoryszyn, A. & Dańko, R. (2013). Examinations of parameters influencing the outflow of two phase air-sand stream from machine chamber and core box filling in shooting process. Archives of Metallurgy and Materials. 58(3), 903-906.
  • [4] Dańko, R. & Jamrozowicz, Ł. (2017). Density distribution and resin migration investigations in samples of sand core made by blowing method. Journal of Casting & Materials Engineering. 1(3), 70-73.
  • [5] Asłanowicz, M. et al. (2013). Conceptual design of a core making system. Archives of Foundry Engineering. 13(1), spec. ed. 13-16.
  • [6] Grabowska, B., Malinowski, P. & Szucki, M. (2016). Thermal analysis in foundry technology. Journal of Thermal Analysis and Calorymetry. 126(1), 245-250.
  • [7] Boenisch, D. & Knauf, M. (1991). Kernschiessen - Untersuchungen mit neuartigen Prüfkörpern und verschiedenen Kernbindern. Giesserei. 18, 640-646.
  • [8] Ni Chang-jiang, Lu Gao-chun, Zhang Qing-dong, et al. (2016). Influence of core box vents distribution on flow dynamics of core shooting process based on experiment and numerical simulation. China Foundry.13(1), 22-29.
  • [9] Bakhtiyarov, S.I. & Overfelt, R.A. (2003). CFD modeling and experimental study of resin-bonded sand/air two-phase flow in sand core making process. Powder Technology. 133, 68-78.
  • [10] Winartomo, B., Vroomen, U., Hrigpolaczek, A.B. et al. (2013). Multiphase modelling of core shooting process. International Journal of Cast Metals Research. 18(1), 13-20.
  • [11] Vidal, V., Beauvais, P., Leger-Delcourt, E., Hossemand, J.S. & Sadon, P. (2005): Pressure distribution during core production I core blowing machines. Fonderie Fondeur D’Aujourd’Hui. 241, 12-20.
  • [12] Fayomi, O., Ajayi, O. & Popoola, A. (2011). Suitability of local binder compositional variation on silica sand for foundry core making. International Journal of Physical Sciences. 6(8), 1940-1946.
  • [13] Schneider, M., Heisser, C., Serghini, A. & Kessler, A. (2008). Experimental investigation, physical modeling and simulation of core production processes. AFS Trans. 112, 419-432.
  • [14] Czerwinski, F., Mir, M. & Kasprzak, W. (2015). Application of cores and binders in metal casting. International Journal of Cast Metals Research. 28, 129-139.
  • [15] Srivastava, A. & Sundaresan, S. (2003). Analysis of a frictional-kinetic model for gas-particle flow. Powder Technology. 129, 72-85.
  • [16] Ni Chang-jiang, Lu Gao-chun, Zhang Qing-dong, et al. (2016). Frictional kinetic modeling and numerical simulation of core shooting process. International Journal of Cast Metals Research. 29, 214-221.
  • [17] Darabi, P., Pougatch, K., Salcudean, M., et al. (2011). DEM investigations of fluidized beds in the presence of liquid coating. Powder Technology. 214, 365-374.
  • [18] Wu, J., Cui, Y. & Li, W. (2001). A Study on Numerical Simulation of Core-Shooting Process. Journal of Material Science and Technology. 17(6), 625-628.
  • [19] Walker, M., Palczenski, S., Snider, D. & Williams, K. (2002). Modeling Sand Core Blowing: Simulation’s Next Challenge. Modern Casting. April, 41-43.
  • [20] Model investigation of sand-air stream flow as a way of improvement of theoretical background of foundry core shooting process simulation. Polish NCN project no. UMO- 2014/15/B/ST8/00206.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3ff3e76-cc19-42cf-8057-67bfe2ef572f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.