Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Granular object segmentation is an important area of image processing, which has several practical applications in agriculture, food industry, geology, and forensics. In this paper, we present a simple algorithm for the analysis of granulometric images that consist of touching or overlapping convex objects such as coffee bean, food grain, nuts, blood cell, or cookies. The algorithm is based on certain underlying digital-geometric features embedded in their binary snapshots. The concept of an outer isothetic cover and the property of geometric convexity are used to extract the joining points (or concavity points) from the ensemble of objects. Next, a combinatorial technique is employed to determine the separator of two overlapping or neighboring objects. This technique is fully automated and it needs only integer-domain computation. The termination time of the algorithm can be tradedoff with the quality of segmentation by changing the resolution parameter. Experimental results for a variety of objects chosen from different application domains such as cell image, coffee-bean image and others demonstrate the efficiency and robustness of the proposed method compared to earlier watershed-based algorithms.
Wydawca
Czasopismo
Rocznik
Tom
Strony
321--338
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
- Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata, India
autor
- Department of Information Technology Indian Institute of Engineering Science and Technology Shibpur, Howrah, India
autor
- Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata, India
Bibliografia
- [1] Bai, X., Sun, C., Zhou, F.: Splitting touching cells based on concave points and ellipse fitting, Pattern Recognition, 42(11), 2009, 2434–2446.
- [2] Bera, S., Biswas, A., Bhattacharya, B. B.: A Fast Digital-Geometric Approach for Granulometric Image Analysis, Recent Advances in Information Technology, Advances in Intelligent Systems and Computing, Springer, 266, 2014, 37–47.
- [3] Biswas, A., Bhowmick, P., Bhattacharya, B. B.: Construction of isothetic covers of a digital object: A combinatorial approach, Journal of Visual Communication and Image Representation, 21(4), 2010, 295–310.
- [4] Casasent, D., Talukdar, A., Cox, W., Chang, H., Weber, D.: Detection segmentation and pose estimation of multiple touching product inspection items, SPIE - Photonics East’96, Optics in Agriculture, Forestry, and Biological Processing II, 2907, 1996, 205–216.
- [5] Cates, J. E., Whitaker, R. T., Jones, G. M.: Case study: an evaluation of user-assisted hierarchical watershed segmentation, Medical Image Analysis, 9(6), 2005, 566–578.
- [6] Charles, J. J., Kuncheva, L. I., Wells, B., Lim, I. S.: Object segmentation within microscope images of palynofacies, Computers & Geosciences, 34(6), 2008, 688–698.
- [7] Chen, Q., Yang, X., Petriu, E. M.: Watershed segmentation for binary images with different distance transforms, Proceedings of the 3rd IEEE International Workshop on Haptic, Audio and Visual Environments and Their Applications. HAVE 2004, 2004.
- [8] Cong, G., Parvin, B.: Model-based segmentation of nuclei, Pattern Recognition, 33(8), 2000, 1383–1393.
- [9] Cristoforetti, A., Faes, L., Ravelli, F., Centonze, M., Del Greco, M., Antolini, R., Nollo, G.: Isolation of the left atrial surface from cardiac multi-detector CT images based on marker controlled watershed segmentation, Medical Engineering & Physics, 30(1), 2008, 48–58.
- [10] Dougherty, E. R.: An introduction to morphological image processing, Tutorial texts in Optical Engineering, 1992.
- [11] Du, C. J., Sun, D. W.: Automatic measurement of pores and porosity in pork ham and their correlations with processing time, water content and texture, Meat Science, 72(2), 2006, 294–302.
- [12] Farhan, M., Yli-Harja, O., Niemist¨o, A.: An improved clump splitting method for convex objects, Proceedings of the 7th International Workshop on Computational Systems Biology, 2010.
- [13] Farhan, M., Yli-Harja, O., Niemist¨o, A.: A novel method for splitting clumps of convex objects incorporating image intensity and using rectangular window-based concavity point-pair search, Pattern Recognition, 46(3), 2013, 741–751.
- [14] Fernandez, G., Kunt, M., Zrÿd, J.-P.: A new plant cell image segmentation algorithm, Image Analysis and Processing, Springer, 1995.
- [15] Gonzalez, R. C., Woods, R. E.: Digital Image Processing, Prentice Hall, second edition, 2001.
- [16] Hall, O., Hay, G. J.: A multiscale object-specific approach to digital change detection, International Journal of Applied Earth Observation and Geoinformation, 4(4), 2003, 311–327.
- [17] Iwanowski, M.: Morphological Boundary Pixel Classification, Proceedings of the International Conference on ”Computer as a Tool”, EUROCON, 2007, IEEE, 2007.
- [18] Jalba, A. C., Wilkinson, M. H., Roerdink, J. B.: Automatic segmentation of diatom images for classification, Microscopy Research and Technique, 65(1-2), 2004, 72–85.
- [19] Jung, C. R.: Unsupervised multiscale segmentation of color images, Pattern Recognition Letters, 28(4), 2007, 523–533.
- [20] Karantzalos, K., Argialas, D.: Improving edge detection and watershed segmentation with anisotropic diffusion and morphological levellings, International Journal of Remote Sensing, 27(24), 2006, 5427–5434.
- [21] Keagy, P. M., Parvin, B., Schatzki, T. F.: Machine recognition of navel orange worm damage in X-ray images of pistachio nuts, LWT-Food Science and Technology, 29(1), 1996, 140–145.
- [22] Keagy, P. M., Schatzki, T. F.: Machine recognition of weevil damage in wheat radiographs, Applications in Optical Science and Engineering, International Society for Optics and Photonics, 1993.
- [23] Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis., Elsevier, 2004.
- [24] Kothari, S., Chaudry, Q., Wang, M. D.: Automated cell counting and cluster segmentation using concavity detection and ellipse fitting techniques, Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009. ISBI’09, IEEE, 2009.
- [25] Kumar, S., Ong, S. H., Ranganath, S., Ong, T. C., Chew, F. T.: A rule-based approach for robust clump splitting, Pattern Recognition, 39(6), 2006, 1088–1098.
- [26] Leprettre, B., Martin, N.: Extraction of pertinent subsets from time–frequency representations for detection and recognition purposes, Signal Processing, 82(2), 2002, 229–238.
- [27] Liang, J.: Intelligent splitting in the chromosome domain, Pattern Recognition, 22(5), 1989, 519–532.
- [28] Lin, G., Adiga, U., Olson, K., Guzowski, J. F., Barnes, C. A., Roysam, B.: A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks, Cytometry Part A, 56(1), 2003, 23–36.
- [29] Long, F., Peng, H., Myers, E.: Automatic segmentation of nuclei in 3D microscopy images of C. elegans, Proceedings of the 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2007. ISBI 2007, IEEE, 2007.
- [30] Malcolm, A. A., Leong, H. Y., Spowage, A. C., Shacklock, A. P.: Image segmentation and analysis for porosity measurement, Journal of Materials Processing Technology, 192, 2007, 391–396.
- [31] Orbert, C. L., Bengtsson, E. W., Nordin, B. G.: Watershed segmentation of binary images using distance transformations, Proceedings, SPIE, 1902, 1993.
- [32] Park, S. C., Lim, S. H., Sin, B. K., Lee, S. W.: Tracking non-rigid objects using probabilistic Hausdorff distance matching, Pattern Recognition, 38(12), 2005, 2373–2384.
- [33] Pratikakis, I. E., Sahli, H., Cornelis, J.: Low level image partitioning guided by the gradient watershed hierarchy, Signal Processing, 75(2), 1999, 173–195.
- [34] Razdan, A., Bae, M.: A hybrid approach to feature segmentation of triangle meshes, Computer-Aided Design, 35(9), 2003, 783–789.
- [35] Schatzki, T. F., Haff, R. P., Young, R., Can, I., Le, L. C., Toyofuku, N.: Defect detection in apples by means of X-ray imaging, Transactions of the ASAE, 40(5), 1997, 1407–1415.
- [36] Schatzki, T. F., Witt, S. C., Wilkins, D. E., Lenker, D. H.: Characterization of growing lettuce from density contoursI. Head selection, Pattern Recognition, 13(5), 1981, 333–340.
- [37] Schatzki, T. F., Wong, R. Y.: Detection of submilligram inclusions of heavy metals in processed foods, Food Technology (USA), 1989.
- [38] Sun, H. Q., Luo, Y. J.: Adaptive watershed segmentation of binary particle image, Journal of Microscopy, 233(2), 2009, 326–330.
- [39] Talukder, A., Casasent, D., Lee, H. W., Keagy, P. M., Schatzki, T. F.: Modified binary watershed algorithm for segmentation of X-ray agricultural products, Proceedings, SPIE, 3543, 1998.
- [40] Talukder, A., Casasent, D., Lee, H. W., Keagy, P. M., Schatzki, T. F.: New feature extraction method for classification of agricultural products from X-ray images, Proceedings, SPIE, 3543, 1999.
- [41] Talukder, A., Casasent, D. P.: Classification and pose estimation of objects using nonlinear features, Proceedings, SPIE, 3390, 1998.
- [42] Umesh Adiga, P. S., Chaudhuri, B. B.: An efficient method based on watershed and rule-based merging for segmentation of 3-D histo-pathological images, Pattern Recognition, 34(7), 2001, 1449–1458.
- [43] Vincent, L.: Fast granulometric methods for the extraction of global image information, Proceedings, 11th Annual Symposium of the South African Pattern Recognition Association, 2000.
- [44] Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6), 1991, 583–598.
- [45] Wang, D.: Unsupervised video segmentation based on watersheds and temporal tracking, IEEE Transactions on Circuits and Systems for Video Technology, 8(5), 1998, 539–546.
- [46] Wang, H., Zhang, H., Ray, N.: Clump splitting via bottleneck detection and shape classification, Pattern Recognition, 45(7), 2012, 2780–2787.
- [47] Wang, W., Hao, S.: Cell cluster image segmentation on form analysis, Proceedings of the third International Conference on Natural Computation, 2007. ICNC 2007, 4, IEEE, 2007.
- [48] Wang,W. X.: Binary image segmentation of aggregates based on polygonal approximation and classification of concavities, Pattern Recognition, 31(10), 1998, 1503–1524.
- [49] Wen, Q., Chang, H., Parvin, B.: A Delaunay triangulation approach for segmenting clumps of nuclei, Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009. ISBI’09, IEEE, 2009.
- [50] Yang, H., Ahuja, N.: Automatic segmentation of granular objects in images: Combining local density clustering and gradient-barrier watershed, Pattern Recognition, 47.
- [51] Zhong, Q., Zhou, P., Yao, Q., Mao, K.: A novel segmentation algorithm for clustered slender-particles, Computers and Electronics in Agriculture, 69(2), 2009, 118–127.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3fddb8d-c2b9-42b7-98ef-832a95801482