PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigating the Effect of Photo-Oxidative Degradation on the Ageing Resistance of the Car Mudflaps Manufactured with Post-Production High-Density Polyethylene Wastes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of the ageing resistance of automotive mudflaps made of recycled polyethylene blends. The mudflaps were manufactured by a plastic sheet extrusion-calendaring process in Novotech Kostrzyn nad Odrą company. The changes of the mechanical properties in the tensile test and impact toughness test as well as in Shore hardness due to the accelerated aging process were characterized, taking into account the aging sensitivity coefficient (KI), and changes in the structure within the wavenumber range 4000-400 cm-1, taking into account the CI coefficient. The results showed a higher melting point and crystallinity for the recycled HDPE blends during photo-oxidative degradation. Moreover, the results presented decreased tensile strength and ductility, due to macromolecular chain scission caused by oxidation. It was found that the blends of HDPE based on recycled materials are more sensitive to the aging process than virgin HDPE. Finally, it can be concluded that the sensitivity to ageing blends increases with the increase of recycled HDPE content in the HDPE matrix.
Twórcy
  • Polymer Processing Division, Institute of Materials Technology, Poznan University of Technology, Plac Marii Skłodowskiej-Curie 5, 60-965 Poznań
  • NovoTech Sp. Zo.o, Aleja Milenijna 15, 66-470 Kostrzyn nad Odrą, Poland
  • NovoTech Sp. Zo.o, Aleja Milenijna 15, 66-470 Kostrzyn nad Odrą, Poland
  • Research Network Łukasiewicz, Metal Forming Institute, ul. Jana Pawła II 14, 61-139 Poznan, Poland
  • Department of Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Kiersnowska, A.; Fabianowski, W.; Koda, E. The Influence of the Accelerated Aging Conditions on the Properties of Polyolefin Geogrids Used for Landfill Slope Reinforcement. Polymers 2020; 12: 1874, DOI: 10.3390/polym12091874.
  • 2. Grigoriadou, I.; Pavlidou, E.; Paraskevopoulos, K.M.; Terzopoulou, Z.; Bikiaris, D.N. Comparative Study of the Photochemical Stability of HDPE/Ag Composites. Polym. Degrad. Stab. 2018; 153: 23–36, DOI: 10.1016/j.polymdegradstab.2018.04.016.
  • 3. Dulebová, Ľ.; Greškovič, F.; Sikora, J.W.; Krasinskyi, V. Analysis of the Mechanical Properties Change of PA6/MMT Nanocomposite System after Ageing. Key Eng. Mater. 2017; 756: 52–59. DOI: 10.4028/www.scientific.net/KEM.756.52.
  • 4. Kojnoková, T.; Markovičová, L.; Nový, F. Application of Thermal Gravimetric Analysis and Comparison of Polyethylene Films before and after Exposure in Various Chemical Solutions. IOP Conf. Ser. Mater. Sci. Eng. 2021; 1178: 012029, DOI: 10.1088/1757-899X/1178/1/012029.
  • 5. Celina, M.; Linde, E.; Brunson, D.; Quintana, A.; Giron, N. Overview of Accelerated Aging and Polymer Degradation Kinetics for Combined Radiation-Thermal Environments. Polym. Degrad. Stab. 2019; 166: 353–378. DOI: 10.1016/j.polym-degradstab.2019.06.007.
  • 6. Gnatowski, A.; Chyra, M.; Baranowski, W. Analysis of thermomechanical properties and morphology of polyethylene pipes after aging by UV radiation. Polimery. 2014; 59: 308–313. DOI: 10.14314/polimery.2014.308.
  • 7. Garbacz, Ł.; Klepka, T.; Longwic, F. The Influence of the Aging Process on the Change of Selected Strength Properties of Polypropylene Compositions with Mineral Fillers. Adv. Sci. Technol. Res. J. 2021; 15: 65–74.
  • 8. Broughton, W.R.; Maxwell, A.S. Measurement Good Practice Guide. 103.
  • 9. Zhao, B.; Zhang, S.; Sun, C.; Guo, J.; Yu, Y.X.; Xu, T. Aging Behaviour and Properties Evaluation of High-Density Polyethylene (HDPE) in Heating-Oxygen Environment. IOP Conf. Ser. Mater. Sci. Eng. 2018; 369: 012021. DOI: 10.1088/1757-899X/369/1/012021.
  • 10. Czarnecka-Komorowska, D.; Nowak-Grzebyta, J.; Gawdzińska, K.; Mysiukiewicz, O.; Tomasik, M. Polyethylene/Polyamide Blends Made of Waste with Compatibilizer: Processing, Morphology, Rheological and Thermo-Mechanical Behavior. Polymers. 2021; 13. DOI: 10.3390/polym13142385.
  • 11. Michalska-Pożoga, I.; Rydzkowski, T.; Mazur, P.; Sadowska, O.; Thakur, V.K. A Study on the Thermodynamic Changes in the Mixture of Polypropylene (PP) with Varying Contents of Technological and Post-User Recyclates for Sustainable Nanocomposites. Vacuum. 2017; 146: 641–648. DOI: 10.1016/j.vacuum.2017.05.027.
  • 12. Satya, S.K.; Sreekanth, P.S.R. Morphological, Thermal and Viscoelastic Behavior of Recycled High Density Polyethylene Nanocomposite Incorporated with 1D/2D Nanofillers. Iran. Polym. J. 2022; DOI: 10.1007/s13726-022-01023-1.
  • 13. Piesowicz, E.; Irska, I.; Bryll, K.; Gawdzińska, K.; Bratychak, M. Poly(Butylene Terephthalate/Carbon Nanotubes Nanocomposites. Part II. Structure and Properties. Polimery. 2016; 61: 24–30, DOI: 10.14314/polimery.2016.024.
  • 14. Czarnecka-Komorowska, D.; Wiszumirska, K.; Garbacz, T. Films ldpe/lldpe made from post - consumer plastics: processing, structure, mechanical properties. Adv. Sci. Technol. Res. J. 2018; 12: 134–142, DOI: 10.12913/22998624/92205.
  • 15. Oxidative Degradation - an Overview | ScienceDirect Topics Available online: https://www.science-direct.com/topics/engineering/oxidative-degradation (accessed on 29 April 2022).
  • 16. Sobków, D.; Czaja, K. Wpływ warunków przyspieszonego starzenia na proces degradacji poliolefin. Polimery. 2003; 627–632.
  • 17. Yang, R.; Liu, Y.; Yu, J.; Wang, K. Thermal Oxidation Products and Kinetics of Polyethylene Composites. Polym. Degrad. Stab. 2006; 91, 1651–1657, DOI: 10.1016/j.polymdegradstab.2005.12.013.
  • 18. Ito, M.; Nagai, K. Degradation Issues of Polymer Materials Used in Railway Field. Polym. Degrad. Stab. 2008; 93: 1723–1735. DOI: 10.1016/j.polym-degradstab.2008.07.011.
  • 19. Rodriguez, A.K.; Mansoor, B.; Ayoub, G.; Colin, X.; Benzerga, A.A. Effect of UV-Aging on the Mechanical and Fracture Behavior of Low Density Polyethylene. Polym. Degrad. Stab. 2020, 180, 109185, DOI: 10.1016/j.polymdegradstab.2020.109185.
  • 20. Torikai, A.; Takeuchi, A.; Nagaya, S.; Fueki, K. Photodegradation of Polyethylene: Effect of Cross-linking on the Oxygenated Products and Mechanical Properties. Polym. Photochem. 1986; 7: 199–211. DOI: 10.1016/0144-2880(86)90027-8.
  • 21. Jin, H.; Gonzalez-Gutierrez, J.; Oblak, P.; Zupančič, B.; Emri, I. The Effect of Extensive Mechanical Recycling on the Properties of Low Density Polyethylene. Polym. Degrad. Stab. 2012; 97: 2262–2272. DOI: 10.1016/j.polymdegradstab.2012.07.039.
  • 22. Erbetta, C.D.; Silva, M.E.S.; Freitas, R.F.; Sousa, R.G. Accelerated Aging and Characterization of HDPE Pin Type Insulators (15 KV). Polym. Polym. Compos. 2021; 29: 1641–1648. DOI: 10.1177/09673911211047682.
  • 23. ISO 4892-2:2013 Plastics — Methods of Exposure to Laboratory Light Sources — Part 2: Xenon-Arc Lamps.
  • 24. Viebke, J.; Elble, E.; Ifwarson, M.; Gedde, U.W. Degradation of Unstabilized Medium-Density Polyethylene Pipes in Hot-Water Applications. Polym. Eng. Sci. 1994; 34: 1354–1361. DOI: 10.1002/pen.760341708.
  • 25. Masek, A.; Plota, A. Influence of a Natural Plant Antioxidant on the Ageing Process of Ethylene-Norbornene Copolymer (Topas). Int. J. Mol. Sci. 2021; 22: 4018, DOI: 10.3390/ijms22084018
  • 26. Antunes, M.C.; Agnelli, J.A.M.; Babetto, A.S.; Bonse, B.C.; Bettini, S.H.P. Abiotic Thermo-Oxidative Degradation of High Density Polyethylene: Effect of Manganese Stearate Concentration. Polym. Degrad. Stab. 2017; 143: 95–103. DOI: 10.1016/j.polymdegradstab.2017.06.012.
  • 27. ISO 527-2:2012, Plastics — Determination of Tensile Properties — Part 2: Test Conditions for Moulding and Extrusion Plastics Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/60/56046.html (accessed on 15 July 2021).
  • 28. ISO 868:2003 Plastics and Ebonite — Determination of Indentation Hardness by Means of a Durometer (Shore Hardness).
  • 29. ISO 8256:2004 Plastics — Determination of Tensile-Impact Strength.
  • 30. Rouillon, C.; Bussiere, P.-O.; Desnoux, E.; Collin, S.; Vial, C.; Therias, S.; Gardette, J.-L. Is Carbonyl Index a Quantitative Probe to Monitor Polypropylene Photodegradation? Polym. Degrad. Stab. 2016; 128: 200–208. DOI: 10.1016/j.polymdegrad-stab.2015.12.011.
  • 31. Ainali, N.M.; Bikiaris, D.N.; Lambropoulou, D.A. Aging Effects on Low- and High-Density Polyethylene, Polypropylene and Polystyrene under UV Irradiation: An Insight into Decomposition Mechanism by Py-GC/MS for Microplastic Analysis. J. Anal. Appl. Pyrolysis. 2021; 158: 105207. DOI: 10.1016/j.jaap.2021.105207.
  • 32. Gardette, M.; Perthue, A.; Gardette, J.-L.; Janecska, T.; Földes, E.; Pukánszky, B.; Therias, S. Photo- and Thermal-Oxidation of Polyethylene: Comparison of Mechanisms and Influence of Unsaturation Content. Polym. Degrad. Stab. 2013; 98: 2383–2390. DOI: 10.1016/j.polymdegrad-stab.2013.07.017.
  • 33. Santos, C.M. dos; Silva, B.C. da; Backes, E.H.; Montagna, L.S.; Pessan, L.A.; Passador, F.R. Effect of LLDPE on Aging Resistance and Thermal, Mechanical, Morphological Properties of UHM-WPE/LLDPE Blends. Mater. Res. 2018; 21. DOI: 10.1590/1980-5373-mr-2018-0320.
  • 34. Jakubowska, P.; Borkowski, G.; Brząkalski, D.; Sztorch, B.; Kloziński, A.; Przekop, R.E. The Accelerated Aging Impact on Mechanical and Thermal Properties of Polypropylene Composites with Sedimentary Rock Opoka-Hybrid Natural Filler. Materials. 2022; 15: 338, DOI: 10.3390/ma15010338.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3fd76d2-a871-42bd-8e28-f36d889dc196
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.