PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An improved framework for Parkinson’s disease prediction using Variational Mode Decomposition-Hilbert spectrum of speech signal

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Parkinson’s disease (PD) is a neuro-degenerative disease due to loss of brain cells, which produces dopamine. It is most common after Alzheimer’s disease specially seen in old age people. In the earlier stage of disease, it has been noticed that most of the people suffering from speech disorder. From last two decades many studies have been conducted for the analysis of vocal tremors in PD. This study explores the combined approach of Variational Mode Decomposition (VMD) and Hilbert spectrum analysis (HSA) to investigate the voice tremor of patients with PD. A new set of features Hilbert cepstral coefficients (HCCs) are proposed in this study. Proposed features are assessed using vowels and words of PC-GITA database. The effectiveness of HCC features is utilized to perform classification, and regression analysis for PD detection. The highest average classification accuracy up to 91% and 96% is obtained with vowel /a/ and word /apto/ respectively. Further the classification accuracy up to 82% is obtained with independent dataset, when tested with the optimized model developed using PC-GITA database. In dysarthria level prediction highest correlation up to 0.82 is obtained using vowel /a/ and 0.8 with word /petaka/. The outcomes of this study indicate that the proposed articulatory features are suitable and accurate for PD assessment.
Twórcy
  • Department of Electronics and Communication Engineering Birla Institute of Technology, Mesra, Ranchi, India
  • Department of Electronics and Communication Engineering Birla Institute of Technology, Mesra, Ranchi, India
Bibliografia
  • [1] Dashtipour K, Tafreshi A, Lee J, Crawley B. Speech disorders in Parkinson’s disease: pathophysiology, medical management and surgical approaches. Neurodegenerative Dis Manage 2018;8:337–48.
  • [2] Roberts A, Post D. Information content and efficiency in the spoken discourse of individuals with Parkinson’s disease. J Speech Language Hear Res 2018;61(9):2259–74.
  • [3] Mühlhaus J, Frieg H, Bilda K, Ritterfeld U. Game-based speech rehabilitation for people with Parkinson’s Disease. In International Conference on Universal Access in HumanComputer Interaction 2017 Jul 9 (pp. 76-85). Springer, Cham.
  • [4] Little MA, McSharry PE, Hunter EJ, Spielman J, Ramig LO. Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans Biomed Eng 2009;56 (4):1015–22.
  • [5] Tsanas A, Little MA, McSharry PE, Spielman J, Ramig LO. Novel speech signal processing algorithms for high accuracy classification of Parkinsons disease. IEEE Trans Biomed Eng 2012;59:1264–71.
  • [6] Lahmiri S, Shmuel A. Detection of Parkinson’s disease based on voice patterns ranking and optimized support vector machine. Biomed Signal Process Control 2019;49:427–33.
  • [7] Novotny M, Rusz J, Cmejla R, Ruzicka E. Automatic evaluation of articulatory disorders in Parkinson’s disease. IEEE/ACM Trans Audio Speech Lang Process 2014;22(9):1366–78.
  • [8] Orozco-Arroyave JR, Ho¨nig F, Arias-London˜ o JD, VargasBonilla JF, No¨th E. Spectral and cepstral analyses for Parkinson’s disease detection in Spanish vowels and words. Expert Syst 2015;32:688–97.
  • [9] Afonso LCS, Rosa GH, Pereira CR, Weber SAT, Hook C, Albuquerque VHC, et al. A recurrence plot-based approach for Parkinson’s disease identification. Future Generation Computer Systems 2019;94:282–92.
  • [10] Khan T, Westin J, Dougherty M. Cepstral separation difference: a novel approach for speech impairment quantification in Parkinson’s disease. Biocybernetics Biomed Eng 2014;34:25–34.
  • [11] Khan T, Westin J, Dougherty M. Classification of speech intelligibility in Parkinson’s disease. Biocybernetics Biomed Eng 2014;34(1):35–45.
  • [12] Sakar CO, Serbes G, Gunduz A, Tunc HC, Nizam H, Sakar BE, et al. A comparative analysis of speech signal processing algorithms for Parkinson’s disease classification and the use of the tunable Q-factor wavelet transform. Appl Soft Comput 2019;74:255–63.
  • [13] Vasquez-Correa JC, Arias-Vergara T, Orozco-Arroyave JR, Eskofier B, Klucken J, Noth E. Multimodal assessment of Parkinson’s disease: a deep learning approach. IEEE J Biomed Health Inf 2019;23(4):1618–30.
  • [14] Benba A, Jilbab A, Hammouch A. Using human factor cepstral coefficient on multiple types of voice recordings for detecting patients with Parkinson’s disease. IRBM 2017;38(6):346–51.
  • [15] Vásquez-Correa, J. C., Rios-Urrego, C. D., Rueda, A., Orozco-Arroyave, J. R., Krishnan, S., & No¨th, E. (2019, October). Articulation and empirical mode decomposition features in diadochokinetic exercises for the speech assessment of Parkinson’s disease patients. In Iberoamerican Congress on Pattern Recognition (pp. 688-696). Springer, Cham.
  • [16] Rusz J, Cmejla R, Ruzickova H, Ruzicka E. Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson’s disease. J Acoust Soc Am 2011;129(1):350–67.
  • [17] Upadhya SS, Cheeran AN, Nirmal JH. Discriminating Parkinson diseased and healthy people using modified MFCC filter bank approach. Int J Speech Technol 2019;22 (4):1021–9.
  • [18] Kodrasi I, Bourlard H. Statistical modeling of speech spectral coefficients in patients with Parkinson’s disease. Speech Communication; 13th ITG-Symposium. VDE; 2018.
  • [19] Zhang T, Zhang Y, Sun H, Shan H. Parkinson disease detection using energy direction features based on EMD from voice signal. Biocybernetics Biomed Eng 2021;41(1):127–41.
  • [20] Karan B, Sahu SS, Orozco-Arroyave JR, Mahto K. Nonnegative matrix factorization-based time-frequency feature extraction of voice signal for Parkinson’s disease prediction. Comput Speech Lang 2021;69:101216.
  • [21] Despotovic V, Skovranek T, Schommer C. Speech based estimation of Parkinson’s disease using Gaussian processes and automatic relevance determination. Neurocomputing 2020;401:173–81.
  • [22] Vaiciukynas, Evaldas, et al. Detecting Parkinson’s disease from sustained phonation and signals. PloS one 12.10 (2017): e0185613.
  • [23] Karlsson F, Schalling E, Laakso K, Johansson K, Hartelius L. Assessment of speech impairment in patients with Parkinson’s disease from acoustic quantifications of oral diadochokinetic sequences. J Acoust Soc Am 2020;147 (2):839–51.
  • [24] Tougui I, Jilbab A, Mhamdi JE. Analysis of smartphone recordings in time, frequency, and cepstral domains to classify Parkinson’s disease. Healthcare Inf Res 2020;26 (4):274–83.
  • [25] Fang SH, Tsao Y, Hsiao MJ, Chen JY, Lai YH, Lin FC, et al. Detection of pathological voice using cepstrum vectors: a deep learning approach. J Voice 2019;33(5):634–41.
  • [26] Gómez-Vilda P, Mekyska J, Ferrández JM, Palacios-Alonso D, Gómez-Rodellar A, Rodellar-Biarge V, et al. Parkinson disease detection from speech articulation neuromechanics. Front Neuroinf 2017;11:56.
  • [27] Solana-Lavalle G, Rosas-Romero R. Analysis of voice as an assisting tool for detection of Parkinson’s disease and its subsequent clinical interpretation. Biomed Signal Process Control 2021;66:102415.
  • [28] Solana-Lavalle G, Gala´n-Herna´ndez J-C, Rosas-Romero R. Automatic Parkinson disease detection at early stages as a pre-diagnosis tool by using classifiers and a small set of vocal features. Biocybernetics Biomed Eng 2020;40 (1):505–16.
  • [29] Gunduz H. An efficient dimensionality reduction method using filter-based feature selection and variational autoencoders on Parkinson’s disease classification. Biomed Signal Process Control 2021;66:102452.
  • [30] Gupta D, Sundaram S, Khanna A, Ella Hassanien A, de Albuquerque VHC. Improved diagnosis of Parkinson’s disease using optimized crow search algorithm. Comput Electr Eng 2018;68:412–24.
  • [31] Gupta, D., Julka, A., Jain, S., Aggarwal, T., Khanna, A., Arunkumar, N., & de Albuquerque, V. H. C. Optimized cuttlefish algorithm for diagnosis of Parkinson’s disease. Cognitive Systems Res 2018.
  • [32] Lam J, Tjaden K. Clear speech variants: An acoustic study in Parkinson’s disease. J Speech Language Hear Res 2016;59 (4):631–46.
  • [33] Kowalska-Taczanowska R, Friedman A, Koziorowski D. Parkinson’s disease or atypical parkinsonism? The importance of acoustic voice analysis in differential diagnosis of speech disorders. Brain Behav 2020;10(8) e01700.
  • [34] Kuruvilla-Dugdale M, Salazar M, Zhang A, Mefferd AS. Detection of articulatory deficits in Parkinson’s disease: can systematic manipulations of phonetic complexity help? J Speech Language Hear Res 2020;63(7):2084–98.
  • [35] Hemmerling D, Wojcik-Pedziwiatr M. Prediction and estimation of Parkinson’s disease severity based on voice signal. J Voice 2020.
  • [36] Nilashi M, Ibrahim O, Ahmadi H, Shahmoradi L, Farahmand M. A hybrid intelligent system for the prediction of Parkinson’s Disease progression using machine learning techniques. Biocybernetics Biomed Eng 2018;38(1):1–15.
  • [37] Magee M, Copland D, Vogel AP. Motor speech and non-motor language endophenotypes of Parkinson’s disease. Expert Rev Neurother 2019;19(12):1191–200.
  • [38] Vásquez-Correa JC, Orozco-Arroyave JR, Bocklet T, Nöth E. Towards an Automatic evaluation of the dysarthria level of patients with Parkinson’s disease. J Commun Disord 2018;76:21–36.
  • [39] Polychronis S, Niccolini F, Pagano G, Yousaf T, Politis M. Speech difficulties in early de novo patients with Parkinson’s disease. Parkinsonism Related Disord 2019;64:256–61.
  • [40] Hlavnička J, Čmejla R, Tykalová T, Šonka K, Růžička E, Rusz J. Automated analysis of connected speech reveals early biomarkers of Parkinson’s disease in patients with rapid eye movement sleep behaviour disorder. Sci Rep 2017;7 (1):1–13.
  • [41] Yılmaz E, Mitra V, Bartels C, Franco H. (2018). Articulatory features for ASR of pathological speech. arXiv preprint arXiv:1807.10948.
  • [42] Espana-Bonet C, Fonollosa JAR. Automatic speech recognition with deep neural networks for impaired speech. International Conference on Advances in Speech and Language Technologies for Iberian Languages. Cham: Springer; 2016.
  • [43] Karan B, Sahu SS, Mahto K. Parkinson disease prediction using intrinsic mode function based features from speech signal. Biocybernetics Biomed Eng 2020;40(1):249–64.
  • [44] Karan B, Sahu SS, Orozco-Arroyave JR, Mahto K. Hilbert spectrum analysis for automatic detection and evaluation of Parkinson’s speech. Biomed Signal Process Control 2020;61:102050.
  • [45] Orozco-Arroyave JR, Arias-Londoño JD, Vargas-Bonilla JF, González-Rátiva MC, Nöth E. New Spanish speech corpus database for the analysis of people suffering from Parkinson’s disease. In: Proceedings of the 9th Language Resourses and Evaluation Conference (LREC). p. 342–7.
  • [46] Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Trans Signal Process 2014;62(3):531–44.
  • [47] Deb S, Dandapat S, Krajewski J. Analysis and classification of cold speech using variational mode decomposition. IEEE Trans Affective Comput 2017.
  • [48] Sharma R, Bhukya RK, Prasanna SRM. Analysis of the Hilbert spectrum for text-dependent speaker verification. Speech Commun 2018;96:207–24.
  • [49] Huang H, Pan J. Speech pitch determination based on HilbertHuang transform. Signal Process 2006;86(4):792–803.
  • [50] Huang H, Chen X-X. Speech formant frequency estimation based on Hilbert-Huang transform. J-Zhejiang Univ Eng Sci 2006;40(11):1926.
  • [51] Ostertagová E, Ostertag O, Kováč J. (2014). Methodology and application of the Kruskal-Wallis test. In Applied Mechanics and Materials (Vol. 611, pp. 115-120). Trans Tech Publications Ltd.
  • [52] Gabbiani F, Cox SJ. Mathematics for neuroscientists. Academic Press; 2017.
  • [53] Anudeep P, Mourya P, Anandhi T. Parkinson’s disease detection using machine learning techniques. In: Advances in Electronics, Communication and Computing. Singapore: Springer; 2021. p. 483–93.
  • [54] Goyal J, Khandnor P, Aseri TC. A Comparative analysis of machine learning classifiers for dysphonia-based classification of Parkinson’s disease. Int J Data Sci Anal 2021;11(1):69–83.
  • [55] Cernak M, Orozco-Arroyave JR, Rudzicz F, Christensen H, Vásquez-Correa JC, Nöth E. Characterisation of voice quality of Parkinson’s disease using differential phonological posterior features. Comput Speech Lang 2017;46:196–208.
  • [56] Wodzinski M, Skalski A, Hemmerling D, Orozco-Arroyave JR, Nöth E. (2019, July). Deep learning approach to Parkinson’s disease detection using voice recordings and convolutional neural network dedicated to image classification. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 717-720). IEEE.
  • [57] López-Pabón FO, Arias-Vergara T, Orozco-Arroyave JR. Cepstral analysis and Hilbert-Huang transform for automatic detection of Parkinson’s disease. TecnoLo´gicas 2020;23 (47):93–108.
  • [58] Ðström F, Koker R. A parallel neural network approach to prediction of Parkinson’s Disease. Expert Syst Appl 2011;38 (10):12470–4.
  • [59] Froelich W, Wrobel K, Porwik P. Diagnosis of Parkinson’s disease using speech samples and threshold-based classification. J Med Imaging Health Inf 2015;5(6):1358–63.
  • [60] Karan B, Mahto K, Sahu SS. Detection of Parkinson disease using variational mode decomposition of speech signal. 2018 International Conference on Communication and Signal Processing (ICCSP), 2018.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3fb4df0-d5c1-4049-b15b-39afc70c5fc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.