PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Kinetic Study of the Thermal Decomposition of Potassium Chlorate Using the Non-isothermal TG/DSC Technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The non-isothermal TG/DSC technique has been used to study the kinetic triplet of the thermal decomposition of potassium chlorate at different heating rates (5, 10, 15 and 20 °C•min−1). The DSC results showed two consecutive broad exothermic peaks after melting. The first peak contains a shoulder indicating the presence of at least two processes. The overlapped peaks were resolved by a peak fitting procedure, and the three resolved peaks were used for evaluation of the kinetic triplet for each step. The TG results also showed two consecutive mass losses after melting. The kinetics of the mass loss processes were studied using resolved DTG peaks. The activation energies were calculated using the KAS model-free method. The pre-exponential factor and the best kinetic model for each step were determined by means of the compensation effect, and the selected models were confirmed by the nonlinear model fitting method. The average activation energies obtained from the DSC results were 237.3, 293.8, and 231.3 kJ•mol−1 for the three consecutive steps of thermal decomposition of KClO3. The activation energies were 231.0 and 239.9 kJ•mol−1 for the first and second mass loss steps. The Avrami-Erofeev of Ax/y with the function of g(α) = [−ln(1−α)]x/y (x/y = 5/4 and 3/2) was the most probable model for describing the reaction steps.
Rocznik
Strony
505--525
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Faculty of Applied Chemistry, Malek-ashtar University of Technology, Shahin-Shahr, Iran
  • Faculty of Applied Chemistry, Malek-ashtar University of Technology, Shahin-Shahr, Iran
autor
  • Faculty of Applied Chemistry, Malek-ashtar University of Technology, Shahin-Shahr, Iran
autor
  • Faculty of Applied Chemistry, Malek-ashtar University of Technology, Shahin-Shahr, Iran
Bibliografia
  • [1] Pouretedal H.R., Ravanbod M., Kinetic Study of Ignition of Mg/NaNO3 Pyrotechnic Using Non-isothermal TG/DSC Technique, J. Therm. Anal. Calorim., 2015, 119, 2281-2288.
  • [2] Conking J.A., Chemistry of Pyrotechnics Basic Principles and Theory, New York, Marcel Dekker INC, 1985, p. 55; ISBN 978-1574447408.
  • [3] Shamsipur M., Pourmortazavi S.M., Fathollahi M., Kinetic Parameters of Binary Iron/Oxidant Pyrolants, J. Energ. Mater., 2012, 30, 97-106.
  • [4] Pourmortazavi S.M., Hajimirsadeghi S.S., Hosseini S.G., Characterization of the Aluminum/Potassium Chlorate Mixtures by Simultaneous TG-DTA, J. Therm. Anal. Calorim., 2006, 84, 557-561.
  • [5] Dong X.-F., Yan Q.-L., Zhang X.-H., Cao D.-L., Xuan C.-L., Effect of Potassium Chlorate on Thermal Decomposition of Cyclotrimethylenetrinitramine (RDX), J. Anal. Appl. Pyrolysis, 2012, 93, 160-164.
  • [6] Liao L.-Q., Yan Q.-L., Zheng Y., Song Z.-W., Li J.-Q., Liu P., Thermal Decomposition Mechanism of Particulate Core-shell KClO3-HMX Composite Energetic Material, Indian J. Eng. Mater. Sci., 2011, 18, 393-398.
  • [7] Hosseini S.G., Pourmortazavi S.M., Hajimirsadeghi S.S., Thermal Decomposition of Pyrotechnic Mixtures Containing Sucrose with either Potassium Chlorate or Potassium Perchlorate, Combust. Flame, 2005, 141, 322-326.
  • [8] Moretti J.D., Sabatini J.J., Shaw A.P., Chen G., Gilbert R.A., Jr., Oyler K.D., Prototype Scale Development of an Environmentally Benign Yellow Smoke Handheld Signal Formulation Based on Solvent Yellow 33, ACS Sustainable Chem. Eng., 2013, 1, 673-678.
  • [9] Moretti J.D., Sabatini J.J., Shaw A.P., Chen G., Gilbert R.A., Jr., Promising Properties and System Demonstration of an Environmentally Benign Yellow Smoke Formulation for Hand-held Signals, ACS Sustainable Chem. Eng., 2014, 2, 1325-1330.
  • [10] Shimada S., Thermosonimetry and Microscopic Observation of the Thermal Decomposition of Potassium Chlorate, Thermochim. Acta, 1995, 255, 341-345.
  • [11] Pouretedal H.R., Ebadpour R., Application of Non-isothermal Thermogravimetric Method to Interpret the Decomposition Kinetics of NaNO3, KNO3, and KClO4, Int. J. Thermophys., 2014, 35, 942-951.
  • [12] Rudloff W.K., Freeman E.S., The Catalytic Effect of Metal Oxides on the Thermal Decomposition of Potassium Chlorate and Potassium Perchlorate as Detected by Thermal Analysis Methods, J. Phys. Chem., 1970, 74, 3317-3324.
  • [13] Yedukondalu N., Ghule V.D., Vaitheeswaran G., Pressure Induced Structural Phase Transition in Solid Oxidizer KClO3: a First Principles Study, J. Chem. Phys., 2013, 138, 174701-174708.
  • [14] Zhang F., Wang P., A Theoretical Study of the Thermal Decomposition Mechanism of Potassium Chlorate, J. Beijing Univ. Chem. Technol., 2008, 35, 30-34.
  • [15] Nair S.M.K., Sahish T.S., Effect of Gamma-irradiation on the Thermal Decomposition of Potassium Chlorate, J. Radioanal. Nucl. Chem., 1993, 175, 173-184.
  • [16] Vyazovkin S., Burnham A.K., Criado J.M., Pérez-Maqueda L.A., Popescu C., Sbirrazzuoli N., ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data, Thermochim. Acta, 2011, 520, 1-19.
  • [17] Markowitz M.M., Boryta D.A., Stewart H., The Differential Thermal Analysis of Perchlorates. VI. Transient Perchlorate Formation during the Pyrolysis of the Alkali Metal Chlorates, J. Phys. Chem., 1964, 68, 2282-2289.
  • [18] Fernandez d’Arlas B., Rueda L., Stefani P.M., de la Caba K., Mondragona I., Eceiza A., Kinetic and Thermodynamic Studies of the Formation of a Polyurethane Based on 1,6-Hexamethylene Diisocyanate and Poly(Carbonate-co-Ester) Diol, Thermochim. Acta, 2007, 459, 94-103.
  • [19] Matečić Mušanić S., Fiamengo Houra I., Sućeska M., Applicability of Nonisothermal DSC and Ozawa Method for Studying Kinetics of Double Base Propellant Decomposition, Cent. Eur. J. Energ. Mater., 2010, 7, 233-251.
  • [20] Pouretedal H.R., Damiri S., Ghaemi E.F., Non-isothermal Studies on the Thermal Decomposition of C4 Explosive Using the TG/DTA Technique, Cent. Eur. J. Energ. Mater., 2014, 11, 405-416.
  • [21] Georgieva V., Zvezdova D., Vlaev L., Non-isothermal Kinetics of Thermal Degradation of Chitosan, Chem. Cent. J., 2012, 6, 1-10.
  • [22] Chen H., Liu N., Fan W., Two-step Consecutive Reaction Model and Kinetic Parameters Relevant to the Decomposition of Chinese Forest Fuels, J. Appl. Polym. Sci., 2006, 102, 571-576.
  • [23] Kissinger H.E., Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29, 1702-1706.
  • [24] Akahira T., Sunose T., Method of Determining Activation Deterioration Constant of Electrical Insulating Materials, Res. Report Chiba Inst. Technol. (Sci. Technol.), 1971, 16, 22-31.
  • [25] Lee J.-S., Hsu C.-K., Jaw K.-S., The Thermal Properties of KClO4 with Different Particle Size, Thermochim. Acta, 2001, 367-368, 381-385.
  • [26] Vlaev L., Nedelchev N., Gyurova K., Zagorcheva M., A Comparative Study of Non-isothermal Kinetics of Decomposition of Calcium Oxalate Monohydrate, J. Anal. Appl. Pyrolysis, 2008, 81, 253-262.
  • [27] Li Y., Xu L., Yao X., Luo T., Liu G., Thermal Degradation Kinetics of Poly{N-[(4-bromo-3,5-difluoro)-phenyl]maleimide-co-styrene} in Nitrogen, J. Phys.: Conf. Ser., 2012, 339, 1-8.
  • [28] Feng-Qi Z., Rong-Zu H., Pei C., Yang L., Sheng-Lib G., Ji-Rong S., Qi-Zhen S., Kinetics and Mechanism of the Exothermic First-stage Decomposition Reaction of Dinitroglycoluril, Chin. J. Chem., 2004, 22, 649-652.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3f89754-db85-4d7d-8425-fa92c450272e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.