PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of the modernisation of the drainage system on the water retention in ditches

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a study on the retention ditch system characterised by varying hydraulic and geometric parameters, especially longitudinal slopes as well as dimensions and cross-sectional profiles. During the pre-modernisation inventory of the site, only one concrete structure was found on the R-E ditch, with fixed, circular outlet openings. The existing weir height provided a dead retention capacity of 2% geometric capacity of all ditches in the system, and a usable capacity of 23%. It allowed to use only 25% of the full geometric capacity, without water level control. As part of the modernisation, the existing concrete structure was removed, and replaced by seven new damming structures, including three structures on the R-E and R-E1 ditches and one on the R-E4 ditch. These were four plastic structure weirs with movable closures that allowed to regulate the water level, two permanent crest weirs and a disc regulator built into the culvert pipe. These changes reduced the dead storage volume to 1%, and increased the usable storage to 41% of the geometric storage of all ditches in the system. This ensured 42% utilisation of the geometric capacity. The increased water damming in indicated places, it was possible to use the geometric capacity of the ditches up to 65%.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
86--95
Opis fizyczny
Bibliogr. 35 poz., fot., mapa, rys., tab., wykr.
Twórcy
  • Warsaw University of Life Sciences, Institute of Civil Engineering, Nowoursynowska St, 166, 02-787 Warsaw, Poland
  • Warsaw University of Life Sciences, Institute of Civil Engineering, Nowoursynowska St, 166, 02-787 Warsaw, Poland
  • Warsaw University of Life Sciences, Institute of Civil Engineering, Nowoursynowska St, 166, 02-787 Warsaw, Poland
  • Warsaw University of Life Sciences, Institute of Civil Engineering, Nowoursynowska St, 166, 02-787 Warsaw, Poland
  • Warsaw University of Life Sciences, Institute of Civil Engineering, Nowoursynowska St, 166, 02-787 Warsaw, Poland
Bibliografia
  • Abduljaleel, Y. et al. (2023) “Assessment of subsurface drainage strategies using DRAINMOD model for sustainable agriculture: A review,” Sustainability, 15(02), 1355. Available at: https://doi.org/10.3390/su15021355.
  • Bajkowski, S. et al. (2022) “Modular regulators of water level in ditches of subirrigation systems,” Sustainability, 14(07), 4103. Available at: https://doi.org/10.3390/su14074103.
  • Boico, V.F. et al. (2022) “Comparing alternative conceptual models for tile drains and soil heterogeneity for the simulation of tile drainage in agricultural catchments,” Journal of Hydrology, 612, 128120. Available at: https://doi.org/10.1016/j.jhydrol.2022.128120.
  • Bos, M.G. (ed.) (1989) Discharge measurement structures (3rd rev. edn., reprint). Wageningen: ILRI.
  • Brandyk, A. et al. (2020) “Conceptual model of drainage-sub irrigation system functioning-first results from a case study of a lowland valley area in Central Poland,” Sustainability, 13, 107. Available at: https://doi.org/10.3390/su13010107.
  • Brandyk, A., Oleszczuk, R. and Urbański, J. (2020) “Estimation of organic soils subsidence in the vicinity of hydraulic structures – Case study of a subirrigation system in Central Poland,” Journal of Ecological Engineering, 21(8), pp. 64–74. Available at: https://doi.org/10.12911/22998993/127256.
  • Darzi, A. et al. (2007) “The suitability of controlled drainage and subirrigation in paddy fields,” Pakistan Journal of Biological Sciences, 10, pp. 492–497. Available at: https://doi.org/10.3923/pjbs.2007.492.497.
  • El-Ghannam, M.K. et al. (2023) Controlled drainage in the Nile River delta of Egypt: A promising approach for decreasing drainage offsite effects and enhancing yield and water use efficiency of wheat. Journal of Arid Land, 15, pp. 460–476. Available at: https://doi.org/10.1007/s40333-023-0095-3.
  • Gąsowska, M., Oleszczuk, R. and Urbański, J. (2019) “Ocena tempa osiadania odwodnionego torfowiska oraz weryfikacja równań empirycznych opisujących ten proces [The estimation of the subsidence rate of drained peatland and verification of empirical equations of this process],” Przegląd Naukowy Inżynieria i Kształtowanie Środowiska, 28(1), pp. 95–104. Available at: https://doi.org/10.22630/PNIKS.2019.28.1.9.
  • Hämmerling, M. et al. (2022) “Application of multi-criteria analytic methods in the assessment of the technical conditions of small hydraulic structures,” Buildings, 12(2), 115. Available at: https://doi.org/10.3390/buildings12020115.
  • He, J., Hou, X.-L. and Wang, W. (2022) “Study of water quality pollution index, land-use and socio-economic factors in Yingkou Irrigation District of China based on redundancy analysis,” Nature Environment and Pollution Technology, 21(1), pp. 297–302. Available at: https://doi.org/10.46488/NEPT.2022.v21i01.035.
  • IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva, Switzerland: Intergovernmental Panel on Climate Change.
  • Jaynes, D.B. (2012) “Changes in yield and nitrate losses from using drainage water management in central Iowa, United States,” Journal of Soil and Water Conservation, 67(6), pp. 485–494. Available at: https://doi.org/10.2489/jswc.67.6.485.
  • Jones, B.M. et al. (2020) “Increase in beaver dams controls surface water and thermokarst dynamics in an Arctic tundra region, Baldwin Peninsula, northwestern Alaska,” Environmental Research Letters, 15(7), 075005. Available at: https://doi.org/10.1088/1748-9326/ab80f1.
  • Kaca, E. (ed.) (2020) Operacyjne sterowanie procesem nawodnień podsiąkowych i odwodnień: komputerowy system wspomagania decyzji wraz z przykładami zastosowania [Operational control of the seepage irrigation and drainage process: computer decision support system with application examples]. Poznań: Bogucki Wydawnictwo Naukowe.
  • Kaca, E. and Kubrak, J. (eds.) (2020) Budowle i urządzenia do pomiaru przepływu wody w kanałach melioracyjnych [Buildings and devices for measuring water flow in drainage canals]. Poznań: Bogucki Wydawnictwo Naukowe.
  • Kęsicka, B., Stasik, R. and Kozłowski, M. (2022) “Effects of modelling studies on controlled drainage in agricultural land on reduction of outflow and nitrate losses–a meta-analysis,” PLoS ONE, 17, e0267736. Available at: https://doi.org/10.1371/journal.pone.0267736.
  • Koltsida, E., Mamassis, N. and Kallioras, A. (2021) “Hydrological modeling using the SWAT Model in urban and peri-urban environments: The case of Kifissos experimental sub-basin (Athens, Greece),” Hydrology and Earth System Sciences, preprint. Available at: https://doi.org/10.5194/hess-2021-482.
  • Kubrak, E. and Kubrak, J. (2022) “Numeryczna prognoza działania klapowego regulatora stanów wody w rowach nawadniających [Numerical prediction of performance of a flap gate upstream water level regulator in irrigation ditches],” Zeszyty Naukowe SGSP, 84, pp. 93–102. Available at: https://doi.org/10.5604/01.3001.0016.1803.
  • Li, S. et al. (2021) „Influence of different controlled drainage strategies on the water and salt environment of ditch wetland: A model-based study,” Soil and Tillage Research, 208, 104894. Available at: https://doi.org/10.1016/j.still.2020.104894.
  • Miller, T.P. et al. (2012) The agricultural BMP handbook for Minnesota. Saint Paul: Minnesota Department of Agriculture.
  • Nowak, B. et al. (2022) “Hydraulic structures as a key component of sustainable water management at the catchment scale – Case study of the Rgilewka River (Central Poland),” Buildings, 12(5), 675. Available at: https://doi.org/10.3390/buildings12050675.
  • Oleszczuk, R., Zając, E. and Urbański, J. (2020) “Verification of empirical equations describing subsidence rate of peatland in Central Poland,” Wetlands Ecology Management, 28, pp. 495–507. Available at: https://doi.org/10.1007/s11273-020-09727-y.
  • Oleszczuk, R. et al. (2021) “Rate of fen-peat soil subsidence near drainage ditches (Central Poland),” Land, 10(12), 1287. Available at: https://doi.org/10.3390/land10121287.
  • Popek, Z. et al. (2021) “Laboratory tests of new groundwater table level regulators in subsurface drainage systems,” Water, 13(5), 631. Available at: https://doi.org/10.3390/w13050631.
  • Renault, D. et al. (2007) Modernizing irrigation management – the MASSCOTE approach: Mapping system and services for canal operation techniques. FAO Irrigation and Drainage Paper 63. Rome: Food and Agriculture Organization of the United Nations.
  • Schuurmans, J. et al. (1999) “Simple water level controller for irrigation and drainage canals,” Journal of Irrigation and Drainage Engineering, 125(4), pp. 189–195. Available at: https://doi.org/10.1061/(ASCE)0733-9437(1999)125:4(189).
  • Skaggs, R.W., Fausey, N.R. and Evans, R.O. (2012) “Drainage water management,” Journal of Soil and Water Conservation, 67(6), pp. 167A–172A. Available at: https://doi.org/10.2489/jswc.67.6.167A.
  • Smedema, L.K., Vlotman, W.F. and Rycroft, D. (2004) Modern land drainage. Planning, design and management of agricultural drainage systems. London: CRC Press. Available at: https://doi.org/10.1201/9781482283860.
  • Sojka, M. et al. (2019) “Sustainable water management in agriculture – The impact of drainage water management on groundwater table dynamics and subsurface outflow,” Sustainability, 11(15), 4201. Available at: https://doi.org/10.3390/su11154201.
  • Sunohara, M.D. et al. (2016) “Controlling tile drainage during the growing season in Eastern Canada to reduce nitrogen, phosphorus, and bacteria loading to surface water,” Agricultural Water Management, 178, pp. 159–170. Available at: https://doi.org/10.1016/j.agwat.2016.08.030.
  • Szejba, D. and Bajkowski, S. (2019) “Determination of tile drain discharge under variable hydraulic conditions,” Water, 11(1), 120. Available at: https://doi.org/10.3390/w11010120.
  • Urbański, J. et al. (2022) “Laboratory tests of water level regulators in ditches of irrigation systems,” Water, 14(8), 1259. Available at: https://doi.org/10.3390/w14081259.
  • Voron, B. (1995) “Regulation and management of water in irrigation canals and water saving irrigation methods and technologies,” La Houille Blanche, 81, pp. 72–81. Available at: https://doi.org/10.1051/lhb/1995037.
  • Wilderer, P.A. (2004) “Applying sustainable water management concepts in rural and urban areas: some thoughts about reasons, means and needs,” Water Science and Technology, 49, pp. 7–16. Available at: https://doi.org/10.2166/wst.2004.0403.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3f339c1-6242-4634-84e6-9d07eb075129
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.