PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Variation of Poisson’s ratio of hard rocks during compression and an innovative determination method based on axial loading-unloading test

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Poisson’s ratio of hard rock exhibits a marked stress dependence, which is contrary to its mechanical definition as an elastic constant. Thus, it is of great importance to determine the Poisson’s ratio through a reasonable method. To investigate the Poisson effect of multiple types of hard rocks (sandstone, basalt, granite, and marble), the uniaxial loading-unloading tests are carried out. The test results indicate that whether the tangent Poisson’s ratio or the average Poisson’s ratio, all gradually increases with the stress level. And the stress dependence of the average Poisson’s ratio under the unloading path is reduced, which is significant in the low and medium stress intervals. Appropriately increasing the number of loading-unloading cycles can also improve the stability of the average Poisson’s ratio to some extent. Based on this, a new method for testing the aver- age Poisson’s ratio is proposed, which can effectively exclude the effect of irreversible displacement of rocks and improve the stability of the average Poisson’s ratio. The test procedure is simple and has good application prospects.
Czasopismo
Rocznik
Strony
1--10
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • State Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact, Army Engineering University of PLA, Nanjing 210007, Jiangsu, China
autor
  • State Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact, Army Engineering University of PLA, Nanjing 210007, Jiangsu, China
autor
  • State Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact, Army Engineering University of PLA, Nanjing 210007, Jiangsu, China
autor
  • State Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact, Army Engineering University of PLA, Nanjing 210007, Jiangsu, China
Bibliografia
  • 1. American Society for Testing and Materials (2014) ASTM D7012-14e1 standard test methods for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures. West Conshohocken, PA, USA
  • 2. Bieniawski ZT (1967) Mechanism of brittle fracture of rock: part I— theory of the fracture process. Int J Rock Mech Min Sci Geomech Abstr 4(4):395-406
  • 3. Bieniawski ZT, Bernede MJ (1978) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int J Rock Mech Min Sci 16:135-140
  • 4. Cai M, Kaiser PK, Tasaka Y, Maejima T, Morioka H, Minami M (2004) Generalized crack initiation and crack da-mage stress thresholds of brittle rock masses near underground excavations. Int J Rock Mech Min Sci 41(5):833-847. https://doi.org/10.1016/j. ijrmms.2004.02.001
  • 5. CSRME (2013) Standard for test methods of engineering rock mass, GB/T50266-2013, Beijing, China
  • 6. Davarpanah M, Somodi G, Kovacs L, Vasarhelyi B (2019) Complex analysis of uniaxial compressive tests of the Móragy granitic rock formation (Hungary). Studia Geotech Et Mech 41(1):21-32. https://doi.org/10.2478/sgem-2019-0010
  • 7. Dong L, Xu HF, Fan PX, Wu ZC (2021) On the experimental determination of Poisson’s ratio for intact rocks and its variation as deformation develops. Adv Civ Eng 5:1-10. https://doi.org/10. 1155/2021/8843056
  • 8. Eberhardt E, Stead D, Stimpson B (1998) Read RS (1998) Identifying crack initiation and propagation thresholds in brittle rock. Canad Geotech J 35(2):222-233
  • 9. Fan PX, Gao H, Zhao YT, Dong L, Wang DR (2022) Stress dependency of Poisson’s ratio in rocks. J Army Eng Univer PLA 1(6):16- 25. https://doi.org/10.12018/ji.ssn.2097-0730.20211123002
  • 10. Gercek H (2007) Poisson’s ratio values for rocks. Int J Rock Mech Min Sci 44(1):1-13. https://doi.org/10.1016/j.ijrmms.2006.04.011
  • 11. ISRM (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int J Rock Mech Min Sci Geomech Abstr 2(16):135-140
  • 12. Ji S, Li L, Motra HB, Wuttke F, Sun S, Michibayashi K, Salisbury MH (2018) Poisson’s ratio and auxetic properties of natural rocks. J Geophys Res Solid Earth 123(2):1161-1185. https://doi.org/10. 1002/2017JB014606
  • 13. Li XW, Yao ZS, Huang XW, Liu ZX, Zhao X, Mu KH (2021) Investigation of deformation and failure characteristics and energy evolution of sandstone under cyclic loading and unloading. Rock Soil Mech 42(06):1693-1704. https://doi.org/10.16285/j.rsm. 2020.1463
  • 14. Liang CY, Li R, Wang SX, Li SD, He JM, Ma CF (2012) Experimental investigations on rate-dependent stress-strain characteristics and energy mechanism of rock under uniaixal compression. Chin J Mech Eng 31(09):1830-1838. https://doi.Org/10.3969/j.issn.1000— 6915.2012.09.014
  • 15. Liu J, Qi X, Yang J, Liang C, Dai J, Bian Y (2024) Failure transition of shear-to-dilation band of rock salt under triaxial stresses. J Rock Mech Geotech Eng 16(1):56-64. https://doi.Org/10.1016/j. jrmge.2023.03.015
  • 16. Lógó BA, Vasarhelyi B (2019) Estimation of the Poisson’s rate of the intact rock in the function of the rigidity. Period Polytech Civ Eng 63(4):1030-1037. https://doi.org/10.3311/PPci.14946
  • 17. Lógó BA, Vasarhelyi B (2022) Theoretical relationship between the confining pressure and Poisson’s ratio of intact rock. Period Polytech Civ Eng 66(4):1114-1121. https://doi.org/10.3311/ PPci.19208
  • 18. Martin CD, Chandler NA (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstr 31(6):643-659. https://doi.org/10.1016/0148-9062(94)90005-1
  • 19. Ren F, Zhu C, He M (2020) Moment tensor analysis of acoustic emissions for cracking mechanisms during schist strain burst. Rock Mech Rock Eng 53:153-170. https://doi.org/10.1007/ s00603-019-01897-3
  • 20. Ren F, Zhu C, Yuan Z, Murat K, Tang S (2023) Recognition of shear and tension signals based on acoustic emission parameters and waveform using machine learning methods. Int J Rock Mech Min Sci 171:105578. https://doi.org/10.1016/j.ijrmms.2023. 105578
  • 21. Shi G, Yang X, Yu H, Zhu C (2019) Acoustic emission characteristics of creep fracture evolution in double-fracture fine sandstone under uniaxial compression. Eng Fract Mech 210:13-28. https://doi.org/ 10.1016/j.engfracmech.2018.09.004
  • 22. Sun ZC, Sun T, Wang ZL, Zhang N (2018) A determination method of a static Poisson's ratio of rocks. CN108131133A
  • 23. Tang DM, Zeng JQ, Hu YD, Chen MD (2001) Discussion on testing and interpretation for Possion’s ratio. Chin J Mech Eng S1:1772-1775. https://doi.org/10.3321/j.issn:1000-6915.2001.z1.035
  • 24. Tu ZR, Yang Q (2008) Test research on negative Poisson’s ratio of rock mass. Rock Soil Mech 10:2833-2842. https://doi.org/10.16285/j. rsm.2008.10.050
  • 25. Walsh JB (1965) The effect of cracks in rocks on Poisson’s ratio. J Geophys Res 70(20):5249-5257. https://doi.org/10.1029/JZ070 i020p05249
  • 26. Walsh JB (1993) The influence of microstructure on rock deformation. Comprehensive Rock Engineering Principles, Practice and Projects. Pergamon Press Oxford, England
  • 27. Wang HL, Fan PX, Wang MY, Li WP, Qian YH (2011) Influence of strain rate on progressive failure process and characteristic stresses of red sandstone. Rock Soil Mech 32(5):1340-1346
  • 28. Wang H, Yang TH, Liu HL, Zhao YC, Deng WX, Hou XG (2017) Mechanical properties and energy evolution of dry and saturated sandstones under cyclic loading. Rock Soil Mech 38(6):1600- 1608. https://doi.org/10.16285/j.rsm.2017.06.008
  • 29. Xing HZ, Zhang QB, Zhao J (2018) Stress thresholds of crack development and Poisson’s ratio of rock material at high strain rate. Rock Mech Rock Eng 51(3):945-951. https://doi.org/10.1007/ s00603-017-1377-x
  • 30. Xing HZ, Wang MY, Fan PX, Wang DR (2021) Grain-size effect on dynamic behavior of sandstone based on high-speed 3D-DIC technique. Explos Shock Waves 41(11):46-57. https://doi.org/ 10.11883/bzycj-2021-0088
  • 31. Xu XT, Huang RQ, Li H, Huang QX (2015) Determination of Pois- son’s ratio of rock material by changing axial stress and unloading lateral stress test. Rock Mech Rock Eng 48(2):853-857. https:// doi.org/10.1007/s00603-014-0586-9
  • 32. Xu D, Liu J, Liang C, Yang J, Xu H, Wang L, Liu J (2024) Effects of cyclic fatigue loads on surface topography evolution and hydro- mechanical properties in natural and artificial fracture. Eng Fail Anal 156:107801. https://doi.org/10.1016/j.engfailanal.2023. 107801
  • 33. Yang JN, Fan PX, Wang DR (2022) Review on dynamic disturbance induced failure and instability of deep-buried rock mass discontinuity. Protect Eng 44(05):68-78
  • 34. You MQ, Hua AZ (1997) Determination of Poisson’s ratio for rock material by experiment of confining pressure reduction. J Exp Mech 02:110-114
  • 35. Zhang PW, Chen ZY (2006) Influences of soil elastic modulus and Poisson’s ratio on slope stability. Rock Soil Mech 02:299-303. https://doi.org/10.16285/j.rsm.2006.02.027
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3f258e3-fa59-462f-bb09-7d043ffae6c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.