PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of the Crushed Ore Particles Density in the Pulp Flow Based on the Dynamic Effects of High-Energy Ultrasound

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The method of automatic measurement of the ore particles density in the pulp flow by measuring the amount of high-frequency volume ultrasonic oscillations attenuation, which have passed a fixed distance in the test medium under the influence of high-energy ultrasound dynamic effects is considered. The results of ultrasonic field parameters calculation and spatial simulation of high-energy ultrasound radiation pressure effect on the pulp flow, as well as the results of modeling the trajectory of ore particles displacement of three fractions in the pulp flow under the influence of high-energy ultrasound radiation pressure are presented.
Rocznik
Strony
61--67
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
  • Automation and Control Systems Department, Kryvyi Rih National University, 11 Vitaly Matusevich Street, Kryvyi Rih, Ukraine, 50027
autor
  • Project Management Department, Kryvyi Rih National University, 11 Vitaly Matusevich Street, Kryvyi Rih, Ukraine, 50027
Bibliografia
  • 1. Bergman L. (1957), Ultrasound and its Applications in Science and Technology [in Russian: Ultrazvuk i yego primeneniye v nauke i tekhnike], Inostran. Lit, Moscow.
  • 2. Brazhnikov N. I. (1975), Ultrasonic methods [in Russian: Ultrazvukovyye metody], Energiya, Moscow.
  • 3. Brazhnikov N. I., Shavykina N. S., Gordeiev A. P., Skripaliov V. S. (1975), Application of Lamb Waves to signal liquid media levels [in Russian: Ispolzovaniie voln Lemba dlia signalizatsii urovnia zhidkikh sred], Devices and Control Systems, 9, 31-32.
  • 4. Holzbecher E. (2012), Environmental Modeling using MATLAB, Springer.
  • 5. Hultiaev A. (1999), MATLAB 5.2. Windows-Based Simulation Modeling [in Russian: MATLAB 5.2. Imitatsionnoe modelirovanie v srede Windows], Moscow: Korona print.
  • 6. Humaniuk M. N. (1970), Ultrasound in mining automatic equipment [in Russian: Ultrazvuk v gornoi avtomatike], Kiev: Tekhnika.
  • 7. Kosharskiy B. D., Sitkovskiy A. Y. (1977), Automation of concentrating plants control [in Russian: Avtomatizatsiia upravleniia obogatitelnymi fabrikami], Moscow: Nedra.
  • 8. Morkun V., Morkun N., Pikilnyak A. (2014a), Simulation of the Lamb waves propagation on the plate which contacts with gas containing iron ore pulp in Waveform Revealer toolbox, Metallurgical and Mining Industry, 5, 16-19.
  • 9. Morkun V., Morkun N., Pikilnyak A. (2014b), Ultrasonic facilities for the ground materials characteristics control, Metallurgical and Mining Industry, 2, 31-35.
  • 10. Morkun V., Morkun N., Pikilnyak A. (2014c), The adaptive control for intensity of ultrasonic influence on iron ore pulp, Metallurgical and Mining Industry, 6, 8-11.
  • 11. Morkun V., Morkun N., Pikilnyak A. (2014d), Modeling of ultrasonic waves propagation in inhomogeneous medium using fibered spaces method (k-space), Metallurgical and Mining Industry, 2, 43-48.
  • 12. Morkun V., Morkun N., Pikilnyak A. (2015a), The study of volume ultrasonic waves propagation in the gas-containing iron ore pulp, Ultrasonics, 56, Supplement C, 340-343.
  • 13. Morkun V., Morkun N., Pikilnyak A. (2015b), Adaptive control system of ore beneficiation proces based on Kaczmarz projection algorithm, Metallurgical and Mining Industry, 2, 35-38.
  • 14. Morkun V., Tron V., Goncharov S. (2015c), Automation of the ore varieties recognition process in the technological process streams based on the dynamic effects of high-energy ultrasound, Metallurgical and Mining Industry, 2, 31-34.
  • 15. Protsuto V. S. (1987), Automated systems of controlling technological processes of concentrating plants [in Russian: Avtomatizirovannye sistemy upravleniya tekhnologicheskimi protsessami obogatitelnykh fabrik], Moscow: Nedra.
  • 16. Rosenberg L. D. (1967), Powerful ultrasonic source. Physics and techniques of powerful ultrasound [in Russian: Istochniki moshchnogo ul’trazvuka. Fizika i tekhnika moshchnogo ul’trazvuka], SCIENCE, Moscow.
  • 17. Rzhevskiy V. V., Yamshchikov V. S. (1968), Ultrasound control and research in mining [in Russian: Ultrazvukovoy kontrol i issledovaniia v gornom dele], Moscow: Nedra.
  • 18. Sihul R. I. (1989), Automated control of concentrating and sintering iron ores and concentrates [in Russian: Avtomatizirovannoie upravleniie protsessami obogashcheniya i aglomeratsii zheleznykh rud i kontsentratov], Moscow: Nedra.
  • 19. Soneson J. (2011), HIFU Simulator v1.2. Access mode: http://www.mathworks.com/matlabcentral/fileexchange/30886-high-intensity-focused-ultrasoundsimulator.
  • 20. Ultrasound: Small Encyclopedia (1979) [in Russian: Ultrazvuk: Malaya entsiklopediya], Soviet Encyclopedia, Moscow.
  • 21. Yamshchikov V. S., Korobeinikov N. C. (1967), Application of ultrasound in mining industry: review [in Russian: Primenenie ultrzvuka v gornoi promyshlennosti: Obzor], Moscow: Nedra.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3f02ca3-6016-4525-b4b9-96b24c03776c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.