PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reactive power convex optimization of active distribution network based on Improved GreyWolf Optimizer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The smart grid concept is predicated upon the pervasive With the construction and development of distribution automation, distributed power supply needs to be comprehensively considered in reactive power optimization as a supplement to reactive power. The traditional reactive power optimization of a distribution network cannot meet the requirements of an active distribution network (ADN), so the Improved Grey Wolf Optimizer (IGWO) is proposed to solve the reactive power optimization problem of the ADN, which can improve the convergence speed of the conventional GWO by changing the level of exploration and development. In addition, a weighted distance strategy is employed in the proposed IGWO to overcome the shortcomings of the conventional GWO. Aiming at the problem that reactive power optimization of an ADN is non-linear and non-convex optimization, a convex model of reactive power optimization of the ADN is proposed, and tested on IEEE33 nodes and IEEE69 nodes, which verifies the effectiveness of the proposed model. Finally, the experimental results verify that the proposed IGWO runs faster and converges more accurately than the GWO.
Rocznik
Strony
117--131
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wz.
Twórcy
autor
  • School of Control and Computer Engineering, North China Electric Power University Beijing, China
autor
  • School of Control and Computer Engineering, North China Electric Power University Beijing, China
autor
  • School of Control and Computer Engineering, North China Electric Power University Beijing, China
Bibliografia
  • [1] De M., Goswami S.K., Optimal Reactive Power Procurement with Voltage Stability. Consideration in Deregulated Power System, in IEEE Transactions on Power Systems, vol. 29, no. 5, pp. 2078–2086 (2014).
  • [2] Chen S., Hu W., Su C., Zhang X., Chen Z., Optimal reactive power and voltage control in distribution networks with distributed generators by fuzzy adaptive hybrid particle swarm optimisation method, in IET Generation, Transmission and Distribution, vol. 9, no. 11, pp. 1096–1103 (2015)
  • [3] Ganguly S., Multi-Objective Planning for Reactive Power Compensation of Radial Distribution Networks With Unified Power Quality Conditioner Allocation Using Particle Swarm Optimization, in IEEE Transactions on Power Systems, vol. 29, no. 4, pp. 1801–1810 (2014).
  • [4] Queiroz L.M.O., Lyra C., Adaptive Hybrid Genetic Algorithm for Technical Loss Reduction in Distribution Networks Under Variable Demands, in IEEE Transactions on Power Systems, vol. 24, no. 1, pp. 445–453 (2009).
  • [5] Zheng W., Wu W., Zhang B., Sun H., Liu Y., A Fully Distributed Reactive Power Optimization and Control Method for Active Distribution Networks, in IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 1021–1033 (2016).
  • [6] Ding T., Yang Q., Yang Y., Li C., Bie Z., Blaabjerg F., A Data-Driven Stochastic Reactive Power Optimization Considering Uncertainties in Active Distribution Networks and Decomposition Method, in IEEE Transactions on Smart Grid, vol. 9, iss. 5 (2017).
  • [7] Lin C., Wu W., Zhang B., Wang B., Zheng W., Li Z., Decentralized Reactive Power Optimization Method for Transmission and Distribution Networks Accommodating Large-Scale DG Integration, in IEE Transactions on Sustainable Energy, vol. 8, no. 1, pp. 363–373 (2017).
  • [8] Ding T., Liu S., Wu Z., Bie Z., Sensitivity-based relaxation and decomposition method to dynamic reactive power optimisation considering DGs in active distribution networks, in IET Generation, Transmission and Distribution, vol. 11, no. 1, pp. 37–48 (2017).
  • [9] Ding T., Liu S., Yuan W., Bie Z., Zeng B., A Two-Stage Robust Reactive Power Optimization Considering Uncertain Wind Power Integration in Active Distribution Networks, in IEEE Transactions on Sustainable Energy, vol. 7, no. 1, pp. 301–311 (2016).
  • [10] Yang Y., Wu W., A Distributionally Robust Optimization Model for Real-time Power Dispatch in Distribution Networks, in IEEE Transactions on Smart Grid, vol. 10, iss. 4 (2018).
  • [11] Li P., Wu Z., Wang Y., Dou X., Hu M., Hu J., Adaptive robust optimal reactive power dispatch in unbalanced distribution networks with high penetration of distributed generation, in IET Generation, Transmissionand Distribution, vol. 12, no. 6, pp. 1382–1389 (2018).
  • [12] Ding T., Guo Q., Sun H., Wang B., Xu F., A quadratic robust optimization model for automatic voltage control on wind farm side, in Proc. IEEE Power Energy Soc. Gen. Meeting, Vancouver, BC, Canada, pp. 1–5 (2013).
  • [13] Ding T., Bo R., Sun H., Li F., Guo Q., A robust two-level coordinated static voltage security region for centrally integrated wind farms, IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 460–470 (2016).
  • [14] López J., Contreras J., Mantovani J.R.S., Reactive power planning under conditional-value-atrisk assessment using chance-constrained optimisation, IET Gener. Transm. Distrib., vol. 9, no. 3, pp. 231–240 (2014).
  • [15] Rabiee A., Parniani M., Voltage security constrained multi-period optimal reactive power flow using benders and optimality condition decompositions, IEEE Trans. Power Syst., vol. 28, no. 2, pp. 696–708 (2013).
  • [16] Farivar M., Low S.H., Branch flow model: Relaxations and convexification – Part I, IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2554–2564 (2013).
  • [17] Farivar M., Low S.H., Branch flow model: Relaxations and convexification – Part II, IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2565–2572 (2013).
  • [18] Mohammed H.M., Umar S.U., Rashid T.A., A Systematic and Meta-analysis Survey of Whale Optimization Algorithm, Computational Intelligence and Neuroscience (2019).
  • [19] Shamsaldin Ahmed S. et al., Donkey and Smuggler Optimization Algorithm: A Collaborative Working Approach to Path Finding, Journal of Computational Design and Engineering, vol. 6, pp. 562–583 (2019).
  • [20] Abdullah J.M., Ahmed T., Fitness Dependent Optimizer: Inspired by the Bee Swarming Reproductive Process, IEEE Access, vol. 7, pp. 43473–43486 (2019).
  • [21] Jabar Asia L., Rashid T.A., A Modified Particle Swarm Optimization with Neural Network via Euclidean Distance, International Journal of Recent Contributions from Engineering, Science and IT (iJES), vol. 6, no. 1, pp. 1–18 (2018).
  • [22] Mirjalili S., Mirjalili S.M., Lewis A., Grey wolf optimizer, Advances in Engineering Software, vol. 69, no. 7, pp. 46–1 (2014).
  • [23] Zhang Y., Zhou J., Zheng Y. et al., Control optimisation for pumped storage unit in micro-grid with wind power penetration using improved grey wolf optimiser, IET Gener. Transm. Distrib., vol. 11, no. 13, pp. 3246–3256 (2017).
  • [24] Konstantinov S.V., Khamidova U.K., Sofronova E.A., A Novel Hybrid Method of Global Optimization Based on the Grey Wolf Optimizer and the Bees Algorithm, Procedia Computer Science, vol. 150, pp. 471–477 (2019).
  • [25] Singh S.B., Singh N., Hachimi H., Inertia Constant strategy on Mean Grey Wolf Optimizer Algorithm for Optimization Functions, 2019 5th International Conference on Optimization and Applications (ICOA), Kenitra, Morocco, pp. 1–7 (2019).
  • [26] Rashid T.A., Abbas D.K., Turel Y.K., A multi hidden recurrent neural network with a modified grey wolf optimizer, PLoS ONE, vol. 14, no. 3 (2019).
  • [27] Ding T., Liu S., Wu Z., Bie Z., Sensitivity-based relaxation and decomposition method to dynamic reactive power optimisation considering DGs in active distribution networks, IET Gener. Transm. Distrib., vol. 11, no. 1, pp. 37–48 (2017).
  • [28] Ding T., Liu S., Yuan W., Bie Z., Zeng B., A two-stage robust reactive power optimization considering uncertain wind power integration in active distribution networks, IEEE Trans. Sustain. Energy, vol. 7, no. 1, pp. 301–311 (2016).
  • [29] Li N., Chen L., Low S.H., Exact convex relaxation of OPF for radial networks using branch flow model, in Proc. IEEE 3rd Int. Conf. Smart Grid Commun. (SmartGridComm), Tainan, Taiwan, pp. 7–12 (2012).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3e9aef5-fc92-46cb-82a2-96234ffd9605
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.